首页> 美国政府科技报告 >Hydrodynamic particle migration in a concentrated suspension undergoing flow between rotating eccentric cylinders
【24h】

Hydrodynamic particle migration in a concentrated suspension undergoing flow between rotating eccentric cylinders

机译:在旋转的偏心圆筒之间经历流动的浓缩悬浮液中的流体动力学颗粒迁移

获取原文

摘要

We report on experimental measurements and numerical predictions of shear-induced migration of particles in concentrated suspensions subjected to flow in the wide gap between a rotating inner cylinder placed eccentrically within a fixed outer cylinder (a cylindrical bearing). The suspensions consists of large, noncolloidal spherical particles suspended in a viscous Newtonian liquid. Nuclear magnetic resonance (NMR) imaging is used to measure the time evolution of concentration and velocity profiles as the flow induced particle migration from the initial, well-mixed state. A model originally proposed by Phillips et al. (1992) is generalized to two dimensions. The coupled equations of motion and particle migration are solved numerically using an explicit pseudo-transient finite volume formulation. While not all of the qualitative features observed in the experiments are reproduced by this general numerical implementation, the velocity predictions show moderately good agreement with the experimental data.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号