首页> 美国政府科技报告 >Microporous polyimide films for reduced dielectric applications
【24h】

Microporous polyimide films for reduced dielectric applications

机译:微孔聚酰亚胺薄膜,用于减少介电应用

获取原文

摘要

Limiting factor to computer chip speed and size is the dielectric constant of the interlayer insulating materials, which has been reduced going from inorganic to organic type materials. A further reduction, together with better mechanical properties, is still needed. We have developed a spincoating method in conjunction with a thermodynamic process (Non-solvent Induced Phase Separation) to create microporous polyimide films with both lower dielectric constant and better stress reduction properties compared to solid films. In this method, we spincoat a soluble polyimide solution in 1, 3-dimethoxybenzene solvent onto a Si wafer, and then immediately submerse the wet polymer film into a non-solvent bath, typically toluene. Phase separation of the polymer occurs on a micron size scale and the resulting microporous structure becomes locked in by the high glass transition temperature of the polyimide. Factors affecting film morphology, thickness, pore size, and % porosity include polymer concentration, spin speed, and non-solvent type. Morphology is explained in terms of thermodynamics and kinetics of phase separation and diffusion, using an idealized ternary phase diagram. One particular film having 68% porosity, 22 microns thickness, and 1.4 micron pore size had a dielectric constant of 1.88 and loss of 0.002. Stress measurements indicated that the microporous film reduced surface stress on the wafer by more than a factor of 10 compared to analogous solid polyimide film.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号