首页> 美国政府科技报告 >Modeling the effect of excavation-disturbed-zone porosity increase on groundwater inflow to an underground repository
【24h】

Modeling the effect of excavation-disturbed-zone porosity increase on groundwater inflow to an underground repository

机译:模拟挖掘 - 扰动区孔​​隙度增加对地下水流入地下储存库的影响

获取原文

摘要

The excavation of underground radioactive waste repositories produces conditions where the repository is underpressured relative to the surrounding host rock, resulting in groundwater inflow to the repository. Groundwater has been shown to enhance gas generation from emplaced waste forms, which in turn expedites repository pressurization. Repository pressurization from waste- generated gas results in an increased driving force for dissolved radionuclide movement away from the repository. Repository excavation also produces a zone surrounding the repository having disturbed hydrologic and geomechanical properties. Within this disturbed rock zone (DRZ), intrinsic permeability and porosity change over time due to the formation of microfractures and grain boundary dilation. Additionally, elastic and inelastic changes in pore volume, driven by excavation-related stress redistribution, may cause variations in the near-field fluid pressure and fluid saturation distributions that influence groundwater flow toward the repository excavation. Increased permeability, decreased pore-fluid pressure, and partially saturated conditions within the DRZ also contribute to enhancing potential release pathways away from the repository. Freeze et al. describe an enhanced version of TOUGH2 (called TOUGH28W) and its application to model the coupled processes of gas generation, multiphase flow and geomechanical deformation at the Waste Isolation Pilot Plant (WIPP) repository. This paper describes a new application of TOUGH28W that couples time-dependent DRZ property changes with multiphase groundwater flow around an underground excavation at WIPP. The results are relevant not only to other salt repositories, but also to repositories in other geologic formations where groundwater inflow and DRZ effects are a concern.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号