首页> 美国政府科技报告 >Frank Loop Formation in Irradiated Metals in Response to Applied and Internal Stresses
【24h】

Frank Loop Formation in Irradiated Metals in Response to Applied and Internal Stresses

机译:辐照金属中Frank环形成对应力和内应力的响应

获取原文

摘要

The Frank loop and dislocation microstructures developed in three face-centered cubic alloys during fast reactor irradiation have been examined to determine the influence of applied and internally-generated stress on loop evolution. It is shown that anisotropic stresses generate a corresponding anisotropy of Frank loop populations on the four close-packed planes. The loop populations thus represent a microstructural record of the irradiation creep processes in action. The ease of interpreting this record depends on the relative magnitudes of external and internal stresses. Metals with low irradiation creep rates which also undergo concurrent and substantial phase changes during irradiation are subject to large and indeterminate levels of internally-generated stress which render the microstructural record uninterpretable with respect to the applied stress state. When the internally-generated stresses are small in comparison to the externally-applied stresses, a clear record of the SIPA (Stress-Induced-Preferential-Absorption) growth mechanism of irradiation creep is imprinted at low neutron fluences in the density and sizes of loops present on each set of close-packed planes. This record fades at higher fluences when the continued anisotropic formation, growth and unfaulting of Frank loops generates a corresponding anisotropy in the resultant free dislocation network, a process which alters the competition of sinks for point defects. (ERA citation 05:030901)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号