首页> 美国政府科技报告 >Global Coordinates and Exact Aberration Calculations Applied to Physical Optics Modeling of Complex Optical Systems
【24h】

Global Coordinates and Exact Aberration Calculations Applied to Physical Optics Modeling of Complex Optical Systems

机译:全局坐标和精确像差计算在复杂光学系统物理光学建模中的应用

获取原文

摘要

Historically, wave optics computer codes have been paraxial in nature. Folded systems could be modeled by ''unfolding'' the optical system. Calculation of optical aberrations is, in general, left for the analyst to do with off-line codes. While such paraxial codes were adequate for the simpler systems being studied 10 years ago, current problems such as phased arrays, ring resonators, coupled resonators, and grazing incidents optics require a major advance in analytical capability. This paper describes extension of the physical optics codes GLAD and GLAD V to include a global coordinate system and exact ray aberration calculations. The global coordinate system allows components to be positioned and rotated arbitrarily. Exact aberrations are calculated for components in aligned or misaligned configurations by using ray tracing to compute optical path differences and diffraction propagation. Optical path lengths between components and beam rotations in complex mirror systems are calculated accurately so that coherent interactions in phased arrays and coupled devices may be treated correctly. (ERA citation 11:025963)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号