首页> 美国政府科技报告 >Prediction of radioactive waste glass durability by the hydration thermodynamic model: Application to saturated repository environments.
【24h】

Prediction of radioactive waste glass durability by the hydration thermodynamic model: Application to saturated repository environments.

机译:通过水化热力学模型预测放射性废玻璃的耐久性:应用于饱和的储存环境。

获取原文

摘要

The effects of groundwater chemistry on glass durability were examined using the hydration thermodynamic model. The relative durabilities of SiO(sub 2), obsidians, basalts, nuclear waste glasses, medieval window glasses, and a frit glass were determined in tuffaceous groundwater, basaltic groundwater, WIPP-A brine, and Permian-A brine using the monolithic MCC-1 durability test. For all the groundwaters, the free energy of hydration, calculated from the glass composition and the final experimental pH, was linearly related to the logarithm of the measured silica concentration. The linear equation was identical to that observed previously for these glasses during MCC-1 testing in deionized water. In the groundwater-dominated MCC-1 experiments, the pH values for all the glasses tested appeared to be buffered by the groundwater-precipitate chemistry. The behavior of poorly durable glasses demonstrated that the silica release is a function of the ionic strength of the solution. The ionic strength, in turn, reflects the effect of the groundwater chemistry on the pH. Using the hydration thermodynamic model, nuclear waste glass durability in saturated repository environments can be predicted from the glass composition and the groundwater and the groundwater pH. 47 refs., 3 figs. 1 tab.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号