首页> 美国政府科技报告 >Application of parallel computing to the Monte Carlo simulation of electron scattering in solids: A rapid method for profile deconvolution.
【24h】

Application of parallel computing to the Monte Carlo simulation of electron scattering in solids: A rapid method for profile deconvolution.

机译:并行计算在蒙特卡罗模拟固体电子散射中的应用:一种快速的轮廓反褶积方法。

获取原文

摘要

X-ray microanalysis by analytical electron microscopy (AEM) has proven to be a powerful tool for characterizing the spatial distribution of solute elements in materials. True compositional variations over spatial scales smaller than the actual resolution for microanalysis can be determined if the measured composition profile is deconvoluted. Explicit deconvolutions of such data, via conventional techniques such as Fourier transforms, are not possible due to statistical noise in AEM microanalytical data. Hence, the method of choice is to accomplish the deconvolution via iterative convolutions. In this method, a function describing the assumed true composition profile, calculated by physically permissible thermodynamic and kinetic modeling, is convoluted with the x-ray generation function and the result compared to the measured composition profile. If the measured and calculated profiles agree within experimental error, it is assumed that the true compositional profile has been determined. If the measured and calculated composition profiles are in disagreement, the assumptions in the physical model are adjusted and the convolution process repeated. To employ this procedure it is necessary to calculate the x-ray generation function explicitly. While a variety of procedures are available for calculating this function, the most accurate procedure is to use Monte Carlo modeling of electron scattering.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号