首页> 美国政府科技报告 >Flow Separation Prevention on a Turbine Blade in Cascade at Low Reynolds Number
【24h】

Flow Separation Prevention on a Turbine Blade in Cascade at Low Reynolds Number

机译:低雷诺数叶栅涡轮叶片的流动分离预防

获取原文

摘要

The problem of flow separation from a low pressure turbine blade was investigated. The operating conditions under which the separation occurred were documented through measurement of surface pressure coefficients, boundary layer velocity and turbulence profiles, total pressure loss coefficient and wake velocity momentum deficit. Three different means for reducing the losses associated with the flow separation were also investigated. A boundary layer trip, dimples, and V-grooves were studied as passive means requiring no additional energy to reduce the separation losses. The boundary layer trip was only successful for an inlet and axial chord Reynolds number of 50k with a reduction in loss coefficient of 58.2%. Three sets of dimples were tested with the placement of each at axial chord locations of 50%, 55%, and 65%. The dimples provided reductions in the loss coefficient for Reynolds numbers of 50k, 100k, and 200k ranging from 5.1% (Re = 100k, freestream turbulence level of 4%) to 51. 7% (Re = 50k, freestream turbulence level of 4%). Two sets of V-grooves were tested with axial chord start locations of 55% and 60%. The V-grooves provided smaller reductions in loss coefficient than the dimples. Boundary layer profiles, total pressure loss coefficients, and wake velocity momentum deficits are presented for the three passive modifications.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号