首页> 美国政府科技报告 >Weighted Essentially Non-Oscillatory Numerical Scheme for a Multi- Class LWR Model
【24h】

Weighted Essentially Non-Oscillatory Numerical Scheme for a Multi- Class LWR Model

机译:多类LWR模型的加权本质非振荡数值格式

获取原文

摘要

In this paper we present a high order weighted essentially non- oscillatory (WENO) scheme for solving a multi-class extension of the Lighthill- Whitham-Richards (LWR) model. We first review the multi-class LWR model and present some of its analytical properties. We then present the WENO schemes, which were originally designed for computational fluid dynamics problems and for solving hyperbolic conservation laws in general, and demonstrate how to apply these to the present model. We found through numerical experiments that the WENO method is vastly more efficient than the low order Lax-Friedrichs scheme, yet both methods converge to the same solution of the physical model. It is especially interesting to observe the small staircases in the solution which are completely missed out, because of the numerical viscosity, if a lower order method is used without a sufficiently refined mesh. To demonstrate the applicability of this new, efficient numerical tool, we study the multi-class model under different parameter regimes and traffic stream models. We consider also the convergence of the multi-class LWR model when the number of classes goes to infinity. We show that the solution converges to a smooth profile without staircases when the number of classes increases.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号