首页> 美国政府科技报告 >Clay Delamination in Clay/Poly(Dicyclopentadiene) Nanocomposites Quantified by Small Angle Neutron Scattering and High-Resolution Transmission Electron Microscopy
【24h】

Clay Delamination in Clay/Poly(Dicyclopentadiene) Nanocomposites Quantified by Small Angle Neutron Scattering and High-Resolution Transmission Electron Microscopy

机译:粘土/聚(双环戊二烯)纳米复合材料中的粘土分层通过小角度中子散射和高分辨率透射电子显微镜定量

获取原文

摘要

Highly delaminated clay/poly(dicyclopentadiene) nanocomposites were prepared by in-situ, ring-opening metathesis polymerization of presonicated mixtures of the liquid dicyclopentadiene (DCPD) and organically modified Montmorillonite clays. Three nanocomposite series of increasing clay loadings and modified Montmorillonite PGW were synthesized. The dispersed microstructure of the clays in the nanocomposites was characterized by small-angle neutron scattering (SANS), ultra-small-angle neutron scattering (USANS), small-angle X- ray scattering (SAXS), and high-resolution transmission electron microscopy (HR- TEM). All clays were highly delaminated and well dispersed within their host matrixes. The mean number of individual clay platelets per tactoid was predicted by fitting SANS data to the stacked-disk model and measured directly from HR-TEM images of a large number of tactoids in each sample. SANS results were in good agreement with HR-TEM for composites with low clay concentrations; however, deviations were observed at higher clay loadings. These deviations are discussed in terms of several factors not taken into account by the stacked- disk model: (a) long-range interactions, which become more important at high loadings; (b) departure of tactoid geometries from parallel stacks of rigid disks; and (c) the polydispersity of tactoid thicknesses. SAXS peaks were not present for most of the synthesized nanocomposites, suggesting a high degree of clay delamination.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号