首页> 美国政府科技报告 >Fuel-Air Injection Effects on Combustion in Cavity-Based Flameholders in a Supersonic Flow (Postprint)
【24h】

Fuel-Air Injection Effects on Combustion in Cavity-Based Flameholders in a Supersonic Flow (Postprint)

机译:燃料空气注入对超音速流中腔体火焰稳定器燃烧的影响(后印刷)

获取原文

摘要

The effect of direct fuel and air injection was experimentally studied in a cavity-based flameholder in a supersonic flow. Cavity- based fuel injection and flameholding offer an obstruction-free flow path in hydrocarbon-fueled supersonic combustion ramjet (scram jet) engines. Additionally, this study included characterization of the operational limits (i.e., sustained combustion limits) over a variety of fuel and air flow rates. The cavity rearward ramp includes 10 spanwise injection ports at each of 3 axial stations configured to inject air, fuel, and air, respectively. Planar laser-induced fluorescence (PLIF) techniques were utilized to collect planar distributions of the OH radical at various axial locations within the cavity under different flow conditions. A high-speed emissions camera was used to evaluate the combustion across the cavity. Direct injection of both fuel and air provided additional capability to tune the cavity such that a more stable decentralized flame results. The addition of air injection provided the most improvement over the baseline case (fuel only) near the upstream portion of the cavity close to the cavity step.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号