首页> 美国政府科技报告 >Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics.
【24h】

Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics.

机译:冲击物理非线性各向异性晶体弹塑性的重构。

获取原文

摘要

Several finite elastic strain measures are evaluated for use in constitutive models of crystalline elasticity and elastoplasticity. These include the Green material strain tensor, the Eulerian material strain tensor, and the logarithmic material strain tensor, all of which are referred to locally relaxed coordinates invariant under spatial rotations. Solutions to the planar shock problem from previous work are summarized, and new applications of logarithmic strain-based theory toward shock compression of aluminum, copper, and magnesium single crystals and polycrystals are presented. Consideration of these new results in conjunction with previous analysis for metals, ceramics, and minerals suggests that Eulerian strain-based theory is preferred for typical ductile metallic crystals, while logarithmic strain-based theory is recommended for modeling shocks in ceramics and minerals with larger ratios of shear modulus to bulk modulus.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号