首页> 美国政府科技报告 >Detecting Near-Earth Objects Using Cross-Correlation with a Point Spread Function
【24h】

Detecting Near-Earth Objects Using Cross-Correlation with a Point Spread Function

机译:利用点扩散函数的互相关检测近地天体

获取原文

摘要

This thesis describes a process to help discover Near-Earth Objects (NEOs) of larger than 140 meters in diameter from ground based telescopes. The process involves using Nyquist sampling rate to take data from a ground-based telescope and measuring the atmospheric seeing parameter, r(0), at the time of data collection. r(0) is then used to create a point spread function (PSF) for a NEO at the visual magnitude limit of the telescope and exposure time. This PSF is cross-correlated with the Nyquist sampling rate image from the telescope to reduce the noise and therefore increase the detection probability of a faint NEO. The process is compared to the current detection technique of using Rayleigh sampling with a threshold detector. This process is tested versus improper seeing parameter measurement and different locations of the NEO within the charged-coupled device (CCD) pixel field of view (FOV). The biggest improvement is where the NEO is located in the corner of the pixel FOV. The new process shows improvement in detection probability over the current process in all simulations.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号