首页> 美国政府科技报告 >Surface Enhanced Raman Scattering (SERS)-Based Next Generation Commercially Available Substrate: Physical Characterization and Biological Application
【24h】

Surface Enhanced Raman Scattering (SERS)-Based Next Generation Commercially Available Substrate: Physical Characterization and Biological Application

机译:基于表面增强拉曼散射(sERs)的新一代商业可用基材:物理表征和生物应用

获取原文

摘要

The development of a sensing platform capable of detecting and identifying hazards including biological, chemical, and energetic in nature is a long sought after goal of the Army and many other first responders. Surface enhanced Raman scatting (SERS) is one spectroscopic technique gaining popularity as a solution to many sensing needs due to its many advantages such as high sensitivity, little to no sample preparation required, and use in numerous environmental settings. Despite all the advantages of SERS, it still remains a marginalized sensing technique primarily due to the challenges in fabricating a reliable, highly sensitive and reproducible nanoscale surface. In this work, we show that many of these challenges have been overcome with a newly developed commercially available Klarite SERS substrate. These substrates are fabricated in a fashion similar to standard Klarite substrates, but due to changes in size and spacing of the inverted pyramidal structurethere is an overall increase of SERS sensing capabilities of up to 4 orders of magnitude. In this proceeding paper, the next generation Klarite (308 and 309) substrates are characterized, analyte sensitivity demonstrated at 633 nm and 785 nm, and a brief discussion of their biological sensing capabilities is presented.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号