首页> 美国政府科技报告 >Thermodynamics and Quantum Corrections from Molecular Dynamics for Liquid Water
【24h】

Thermodynamics and Quantum Corrections from Molecular Dynamics for Liquid Water

机译:液态水分子动力学的热力学和量子修正

获取原文

摘要

This paper treats the first problem, how to quantum correct the classical mechanical thermodynamic values available from molecular dynamics, Monte Carlo, perturbation, or integral methods in order to compare with experimental quantum reality. A subsequent paper will focus on the second difficulty, the effective computation of free energy and entropy. A simple technique, derived from spectral analysis of the atomic velocity time histories, is presented here for the quantum correction of classical thermodynamic values. This technique is based on the approximation that potential anharmonicities mainly affect the lower frequencies in the velocity spectrum where the system behaves essentially classically, while the higher spectral frequencies, where the deviation from classical mechanics is most pronounced, involve sufficiently harmonic atomic motions that harmonic quantum corrections apply. The approach is demonstrated by computation of the energy and constant volume heat capacity for water from classical molecular dynamics followed by quantum correction. The potential used to describe the interactions of the system of water molecules includes internal vibrational degrees of freedom and thus strong quantum effects. Comparison of the quantum corrected theoretical values with experimental measurements shows good agreement.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号