首页> 外文期刊>Studies in Applied Mathematics >The interaction of shocks with dispersive waves - II. Incompressible-integrable limit
【24h】

The interaction of shocks with dispersive waves - II. Incompressible-integrable limit

机译:冲击波与色散波的相互作用-II。不可压缩积分极限

获取原文
获取外文期刊封面目录资料

摘要

This is the second in a two-part series of articles in which we analyze a system similar in structure to the well-known Zakharov equations from weak plasma turbulence theory, but with a nonlinear conservation equation allowing finite time shock formation. In this article we analyze the incompressible limit in which the shock speed is large compared to the underlying group velocity of the dispersive wave (a situation typically encountered in applications). After presenting some exact solutions of the full system, a multiscale perturbation method is used to resolve several basic wave interactions. The analysis breaks down into two categories: the nonlinear limit and the linear limit, corresponding to the form of the equations when the group velocity to shock speed ratio, denoted by epsilon, is zero. The former case is an integrable limit in which the model reduces to the cubic nonlinear Schrodinger equation governing the dispersive wave envelope. We focus on the interaction of a "fast" shock wave and a single hump soliton. In the latter case, the epsilon = 0 problem reduces to the linear Schrodinger equation, and the focus is on a fast shock interacting with a dispersive wave whose amplitude is cusped and exponentially decaying. To motivate the time scales and structure of the shock-dispersive wave interactions at lowest orders, we first analyze a simpler system of ordinary differential equations structurally similar to the original system. Then we return to the fully coupled partial differential equations and develop a multiscale asymptotic method to derive the effective leading-order shock equations and the leading-order modulation equations governing the phase and amplitude of the dispersive wave envelope. The leading-order interaction equations admit a fairly complete analysis based on characteristic methods. Conditions are derived in which: (a) the shock passes through the soliton, (b) the shock is completely blocked by the soliton, or (c) the shock reverses direction. In the linear limit, a phenomenon is described in which the dispersive wave induces the formation of a second, transient shock front in the rapidly moving hyperbolic wave. In all cases, we can characterize the long-time dynamics of the shock. The influence of the shock on the dispersive wave is manifested, to leading order, in the generalized frequency of the dispersive wave: the fast-time part of the frequency is the shock wave itself. Hence, the frequency undergoes a sudden jump across the shock layer. In the last section, a sequence of numerical experiments depicting some of the interesting interactions predicted by the analysis is performed on the leading-order shock equations. [References: 29]
机译:这是由两部分组成的系列文章中的第二篇,其中我们分析了一个结构与弱等离子湍流理论中著名的Zakharov方程相似的系统,但是具有一个非线性守恒方程,可以形成有限的时间激波。在本文中,我们分析了不可压缩的极限,在该极限下,与基础波的色散速度(在应用中通常会遇到的情况)相比,冲击速度较大。在介绍了整个系统的一些精确解之后,使用多尺度摄动法来解决几种基本的波相互作用。分析可分为两类:非线性极限和线性极限,对应于当组速度与冲击速度之比(用epsilon表示)为零时方程的形式。前一种情况是可积极限,其中模型简化为支配色散波包络线的三次非线性Schrodinger方程。我们专注于“快速”冲击波和单个驼峰孤子的相互作用。在后一种情况下,ε= 0问题简化为线性Schrodinger方程,并且重点是快速激波与色散波相互作用,该色散波的振幅被捕捉并呈指数衰减。为了激发最低阶的减振波相互作用的时间尺度和结构,我们首先分析一个更简单的常微分方程组,其结构与原始系统相似。然后,我们返回到完全耦合的偏微分方程,并开发一种多尺度渐近方法,以得出有效的主导阶激波方程和主导于色散波包络的相位和幅度的主导阶调制方程。前导相互作用方程式可以基于特征方法进行相当完整的分析。得出以下条件:(a)冲击通过孤子,(b)冲击被孤子完全阻挡,或(c)冲击反向。在线性极限中,描述了一种现象,其中色散波在快速移动的双曲波中引起第二个瞬态冲击波前沿的形成。在所有情况下,我们都可以描述电击的长期动态。冲击对色散波的影响以领先的顺序体现在色散波的广义频率上:频率的快速部分是冲击波本身。因此,频率在冲击层上突然跳跃。在最后一部分中,对主导冲击方程进行了一系列数值实验,描绘了通过分析预测的一些有趣的相互作用。 [参考:29]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号