...
首页> 外文期刊>Chemical engineering journal >Kinetic analysis of high-temperature solid-gas reactions by an inverse method applied to ZnO and SnO2 solar thermal dissociation
【24h】

Kinetic analysis of high-temperature solid-gas reactions by an inverse method applied to ZnO and SnO2 solar thermal dissociation

机译:应用于ZnO和SnO2太阳热解的逆固相反应动力学分析

获取原文
获取原文并翻译 | 示例

摘要

This study addresses the kinetic investigation of solid-gas reactions in a high-temperature solar chemical reactor. An inverse method was developed to identify the kinetics of metal oxide thermal dissociation as part of a two-step thermochemical redox cycle for solar splitting of H2O and CO2. This method was applied and further validated by studying ZnO and SnO2 solar thermal dissociation. A solar chemical reactor enabling continuous solid reactant processing was developed in which both the oxide reactant temperature at the front surface and the O2 concentration in the of f gas were measured dynamically. The aim of the inverse method was to identify the intrinsic kinetics of the dissociation reaction using only the available experimental data. Different approaches were proposed and compared to investigate the kinetics of solid-gas reactions. The activation energy of the reaction was first estimated roughly using an iso-conversional model-free approach, which can be used as an initialization value for further refinement with the inverse method. The inverse method consists in identifying the reaction kinetics from only the online diagnosis of outlet O2 concentration and using a model enabling parameters fitting via an iterative process. Depending on the considered approach and assumptions for predicting the temperature profile within the reacting oxide rod (succession of stationary states assumption or unsteady state operation), the activation energy of the dissociation reaction was found to be 313 ±31 kJ/mol for ZnO and 353 ± 18 kJ/mol for SnO2. Such a method may be implemented for the kinetic analysis of any kind of solid-gas reactions in high-temperature solar reactors.
机译:这项研究致力于高温太阳能化学反应器中固体气体反应的动力学研究。开发了一种逆方法来确定金属氧化物热解离的动力学,将其作为用于分解H2O和CO2的两步热化学氧化还原循环的一部分。通过研究ZnO和SnO2的太阳热解,该方法得到了应用和进一步验证。开发了一种能够进行连续固体反应物处理的太阳能化学反应器,其中动态测量了前表面的氧化物反应物温度和f气体中的O2浓度。逆方法的目的是仅使用可用的实验数据来确定解离反应的内在动力学。提出并比较了不同的方法以研究固体气体反应的动力学。首先,使用无等转换模型的方法粗略估计反应的活化能,该方法可用作初始化值,以利用反方法进一步完善。逆方法包括仅从出口O2浓度的在线诊断中识别反应动力学,并使用能够通过迭代过程拟合参数的模型。根据所考虑的用于预测反应氧化物棒内温度曲线的方法和假设(假设稳态或非稳态操作成功),对于ZnO和353,离解反应的活化能为313±31 kJ / mol。 SnO2为±18 kJ / mol。可以将这种方法用于高温太阳能反应堆中任何种类的固体气体反应的动力学分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号