...
首页> 外文期刊>Physica, D. Nonlinear phenomena >The inviscid, compressible and rotational, 2D isotropic Burgers and pressureless Euler–Coriolis fluids: Solvable models with illustrations
【24h】

The inviscid, compressible and rotational, 2D isotropic Burgers and pressureless Euler–Coriolis fluids: Solvable models with illustrations

机译:无粘性,可压缩和旋转的2D各向同性Burgers和无压Euler-Coriolis流体:带插图的可求解模型

获取原文
获取原文并翻译 | 示例
           

摘要

The coupling between dilatation and vorticity, two coexisting and fundamental processes in fluid dynamics (Wu et al., 2006, pp. 3, 6) is investigated here, in the simplest cases of inviscid 2D isotropic Burgers and pressureless Euler–Coriolis fluids respectively modeled by single vortices confined in compressible, local, inertial and global, rotating, environments. The field equations are established, inductively, starting from the equations of the characteristics solved with an initial Helmholtz decomposition of the velocity fields namely a vorticity free and a divergence free part (Wu et al., 2006, Sects. 2.3.2, 2.3.3) and, deductively, by means of a canonical Hamiltonian Clebsch like formalism (Clebsch, 1857, 1859), implying two pairs of conjugate variables. Two vector valued fields are constants of the motion: the velocity field in the Burgers case and the momentum field per unit mass in the Euler–Coriolis one. Taking advantage of this property, a class of solutions for the mass densities of the fluids is given by the Jacobian of their sum with respect to the actual coordinates. Implementation of the isotropy hypothesis entails a radial dependence of the velocity potentials and of the stream functions associated to the compressible and to the rotational part of the fluids and results in the cancellation of the dilatation-rotational cross terms in the Jacobian. A simple expression is obtained for all the radially symmetric Jacobians occurring in the theory. Representative examples of regular and singular solutions are shown and the competition between dilatation and vorticity is illustrated. Inspired by thermodynamical, mean field theoretical analogies, a genuine variational formula is proposed which yields unique measure solutions for the radially symmetric fluid densities investigated. We stress that this variational formula, unlike the Hopf–Lax formula, enables us to treat systems which are both compressible and rotational. Moreover in the one-dimensional case, we show for an interesting application that both variational formulas are equivalent.
机译:本文研究了流体动力学中两个共存的基本过程(流体等共存和基本过程)之间的耦合(Wu等人,2006年,第3、6页),这是在最简单的无粘性二维各向同性Burgers和无压Euler-Coriolis流体模型中进行的。局限在可压缩,局部,惯性和整体旋转环境中的单个涡流。场方程是从速度方程的初始Helmholtz分解所求解的特性方程(即无涡度和无散度的部分)中得出的(Wu et al。,2006,Sects.2.3.2,2.3。 3),并通过规范形式的汉密尔顿式克雷布斯(规范形式)(Clebsch,1857,1859)演绎,暗示了两对共轭变量。两个矢量值场是运动的常数:在Burgers情况下的速度场和在Euler-Coriolis中的每单位质量的动量场。利用该特性,通过流体相对于实际坐标的和的雅可比行列式给出了流体质量密度的一类解。各向同性假设的实现需要速度势和与流体的可压缩部分和旋转部分相关的流函数的径向相关性,并导致雅可比方程中的膨胀-旋转交叉项抵消。对于理论中出现的所有径向对称雅可比方程,都获得了一个简单的表达式。给出了正则和奇异解的代表性示例,并说明了膨胀和涡旋之间的竞争。受热力学平均场理论的启发,提出了一个真正的变分公式,该公式为所研究的径向对称流体密度提供了独特的度量解决方案。我们强调,与Hopf–Lax公式不同,此变分公式使我们能够处理可压缩和旋转的系统。此外,在一维情况下,我们为一个有趣的应用显示了两个变分公式都是等效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号