首页> 外文期刊>Photochemical & photobiological sciences: the official journal of the European Photochemistry Association and the European Society for Photobiology >Evidence of additional excitation energy transfer pathways in the phycobiliprotein antenna system of Acaryochloris marina
【24h】

Evidence of additional excitation energy transfer pathways in the phycobiliprotein antenna system of Acaryochloris marina

机译:滨蛇纲的藻胆蛋白天线系统中其他激发能转移途径的证据

获取原文
获取原文并翻译 | 示例
           

摘要

To improve the energy conversion efficiency of solar organic cells, the clue may lie in the development of devices inspired by an efficient light harvesting mechanism of some aquatic photosynthetic microorganisms that are adapted to low light intensity. Consequently, we investigated the pathways of excitation energy transfer ( EET) from successive light harvesting pigments to the low energy level inside the phycobiliprotein antenna system of Acaryochloris marina, a cyanobacterium, using a time resolved absorption difference spectroscopy with a resolution time of 200 fs. The objective was to understand the actual biochemical process and pathways that determine the EET mechanism. Anisotropy of the EET pathway was calculated from the absorption change trace in order to determine the contribution of excitonic coupling. The results reveal a new electron energy relaxation pathway of 14 ps inside the phycocyanin component, which runs from phycocyanin to the terminal emitter. The bleaching of the 660 nm band suggests a broader absorption of the terminal emitter between 660 nm and 675 nm. Further, there are trimer depolarization kinetics of 450 fs and 500 fs in high and low ionic strength, respectively, which arise from the relaxation of the beta 84 and alpha 84 in adjacent monomers of phycocyanin. Under conditions of low ionic strength buffer solution, the evolution of the kinetic amplitude during the depolarization of the trimer is suggestive of trimer conservation within the phycocyanin hexamer. The anisotropy values were 0.38 and 0.40 in high and in low ionic strength, respectively, indicating that there is no excitonic delocalization in the high energy level of phycocyanin hexamers.
机译:为了提高太阳能有机电池的能量转换效率,其线索可能在于受某些适合于低光强度的水生光合微生物的有效光收集机制启发而开发的设备。因此,我们使用时间分辨吸收差光谱法(解析时间为200 fs),研究了从连续的光收集色素到蓝藻无形藻滨海藻胆蛋白天线系统内部低能级的激发能转移(EET)的途径。目的是了解决定EET机制的实际生化过程和途径。根据吸收变化曲线计算EET路径的各向异性,以确定激子耦合的贡献。结果显示藻蓝蛋白组分内部有一个14 ps的新电子能量弛豫路径,该路径从藻蓝蛋白延伸到末端发射极。 660 nm波段的漂白表明,终端发射器在660 nm至675 nm之间具有更宽的吸收率。此外,在高和低离子强度下分别具有450 fs和500 fs的三聚体去极化动力学,这是由于藻蓝蛋白的相邻单体中的β84和α84松弛所致。在低离子强度缓冲溶液的条件下,三聚体去极化过程中动力学幅度的变化表明藻蓝蛋白六聚体中三聚体的保守性。高离子强度和低离子强度的各向异性值分别为0.38和0.40,表明藻蓝蛋白六聚体的高能级没有激子离域。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号