首页> 外文期刊>Physica, A. Statistical mechanics and its applications >Escape times for rigid Brownian rotators in a bistable potential from the time evolution of the Green function and the characteristic time of the probability evolution
【24h】

Escape times for rigid Brownian rotators in a bistable potential from the time evolution of the Green function and the characteristic time of the probability evolution

机译:格林函数的时间演化和概率演化的特征时间,双稳态势中的刚性布朗旋转子的逃逸时间

获取原文
获取原文并翻译 | 示例
           

摘要

The greatest relaxation time for an assembly of three-dimensional rigid rotators in an axially symmetric bistable potential is obtained exactly in terms of continued fractions as a sum of the zero frequency decay functions (averages of the Legendre polynomials) of the system. This is accomplished by studying the entire time evolution of the Green function (transition probability) by expanding the time dependent distribution as a Fourier series and proceeding to the zero frequency limit of the Laplace transform of that distribution. The procedure is entirely analogous to the calculation of the characteristic time of the probability evolution (the integral of the configuration space probability density function with respect to the position co-ordinate) for a particle undergoing translational diffusion in a potential; a concept originally used by Malakhov and Pankratov (Physica A 229 (1996) 109). This procedure allowed them to obtain exact solutions of the Kramers one-dimensional translational escape rate problem for piecewise parabolic potentials. The solution was accomplished by posing the problem in terms of the appropriate Sturm-Liouville equation which could be solved in terms of the parabolic cylinder functions. The method (as applied to rotational problems and posed in terms of recurrence relations for the decay functions, i.e., the Brinkman approach c.f. Blomberg, Physica A 86 (1977) 49, as opposed to the Sturm-Liouville one) demonstrates clearly that the greatest relaxation time unlike the integral relaxation time which is governed by a single decay function (albeit coupled to all the others in non-linear fashion via the underlying recurrence relation) is governed by a sum of decay functions. The method is easily generalized to multidimensional state spaces by matrix continued fraction methods allowing one to treat non-axially symmetric potentials, where the distribution function is governed by two state variables. (C) 2001 Elsevier Science B.V. All rights reserved. [References: 41]
机译:三维刚性转子在轴对称双稳态势中的最大松弛时间是根据系统零频率衰减函数(勒让德多项式的平均值)之和的连续分数而精确获得的。这是通过研究格林函数的整个时间演化(跃迁概率)来实现的,方法是将时间相关分布扩展为傅立叶级数,然后进行该分布的拉普拉斯变换的零频率极限。该过程完全类似于计算粒子在电势中进行平移扩散的概率演化的特征时间(相对于位置坐标的配置空间概率密度函数的积分);最初由Malakhov和Pankratov使用的概念(Physica A 229(1996)109)。此过程使他们能够获得分段抛物线电位的Kramers一维平移逃逸率问题的精确解。该解决方案是通过根据合适的Sturm-Liouville方程提出问题来实现的,可以通过抛物柱面函数来解决该问题。该方法(应用于旋转问题并以递归关系表示衰减函数,即Brinkman方法,参见Blomberg,Physica A 86(1977)49,与Sturm-Liouville方法相对)。弛豫时间不同于积分弛豫时间,积分弛豫时间由一个衰变函数控制(尽管通过潜在的递归关系以非线性方式耦合到所有其他衰变函数)由衰变函数的总和控制。通过矩阵连续分数法,可以轻松地将该方法推广到多维状态空间,从而可以处理非轴对称电势,其中分布函数由两个状态变量控制。 (C)2001 Elsevier Science B.V.保留所有权利。 [参考:41]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号