首页> 外文期刊>Physics and chemistry of the earth >Full scale 3D-modelling of the coupled gas migration and heat dissipation in a planned repository for radioactive waste in the Callovo-Oxfordian clay
【24h】

Full scale 3D-modelling of the coupled gas migration and heat dissipation in a planned repository for radioactive waste in the Callovo-Oxfordian clay

机译:计划中的Callovo-Oxfordian粘土中放射性废物的储存库中的气体迁移和热耗散耦合的完整3D模型

获取原文
获取原文并翻译 | 示例
       

摘要

An important question related to the long-term safety performance of a repository for long-lived medium and high-level radioactive waste in the Callovo-Oxfordian clay unit is the impact of heat and gas generated in the waste emplacement areas on the gas and water pressure and on the water saturation in the backfilled repository and in the host rock. The current design of such a repository consists of a multitude of different underground structures, such as emplacement drifts for waste canisters and other types of waste packages, access and ventilation drifts, and access shafts in the central part of the repository. The individual underground structures exhibit different thermo-hydraulic and geometrical properties yielding a large and complex system for the flow and transport of gas, water and heat. A detailed 3D modelling of the entire repository would require a tremendous computational effort, even when using high performance simulator codes. A newly developed method (Poller et al., 2011) allows for the 3D modelling of the two-phase gas-water flow and thermal evolution in the entire repository/host-rock system in a simplified manner. Besides accounting for both the detailed structures at local scale and the global geometry of the drift network, it also allows for an assessment of the gas phase pressure as well as the hydrogen and heat fluxes developing over the complete lifetime of the repository system. In this paper, the results of a reference scenario are presented. The assessment focuses on the two dominant processes, i.e. the dissolution. and. diffusion of the generated hydrogen, and the advective migration of the forming hydrogen gas phase in space and time (up to 1. million years). Further, the main findings of a sensitivity analysis on different features, physical processes and parameter uncertainty are presented.
机译:与Callovo-Oxfordian黏土单元中长期存在的中,高放射性废物库有关的长期安全性能,一个重要问题是废物安置区产生的热量和气体对气体和水的影响压力以及回填储层和主体岩石中的水饱和度。这种储存库的当前设计由多种不同的地下结构组成,例如废物罐和其他类型的废物包的位置漂移,进入和通风的漂移以及储存库中心部分的通道。各个地下结构表现出不同的热工液压和几何特性,从而产生了一个庞大而复杂的气体,水和热的流动和输送系统。即使使用高性能模拟器代码,整个存储库的详细3D建模也需要大量的计算工作。一种新开发的方法(Poller等人,2011)允许以简化的方式对整个储层/主岩体系统中的两相气-水流和热演化进行3D建模。除了考虑局部规模的详细结构和漂移网络的整体几何形状外,它还可以评估在存储系统整个生命周期内产生的气相压力以及氢和热通量。本文介绍了参考方案的结果。评估的重点是两个主要过程,即解散。和。产生的氢的扩散,以及形成的氢气相在空间和时间上的对流迁移(长达100万年)。此外,介绍了针对不同特征,物理过程和参数不确定性进行敏感性分析的主要发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号