...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Hierarchical pattern of microfibrils in a 3D fluorapatite-gelatine nanocomposite: simulation of a bio-related structure building process
【24h】

Hierarchical pattern of microfibrils in a 3D fluorapatite-gelatine nanocomposite: simulation of a bio-related structure building process

机译:3D氟磷灰石-明胶纳米复合材料中微纤维的分层模式:与生物相关的结构构建过程的模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The shape development of a biomimetic fluorapatite-gelatine nanocomposite on the μm scale is characterised by a fractal mechanism with the origin being intrinsically coded in a (central) elongated hexagonal-prismatic seed. The 3D superstructure of the seed is distinctively overlaid by a pattern consisting of gelatine microfibrils. The orientation of the microfibrils is assumed to be controlled by an intrinsic electrical field generated by the nanocomposite during development and growth of the seed. In order to confirm this assumption and to get more detailed information on orientational relations of the complex nanocomposite we simulated the pattern formation process up to the urn scale. The results from experimental studies and simulation results on an atomistic level support a model scenario wherein the elementary building blocks for the aggregation are represented by elongated hexagonal-prismatic objects (A-units), with the embedded collagen triple-helices in their centers. The interactions of the A-units are consequently modelled by three contributions: the crystal energy part (originating from the pair-wise interactions of the "apatite shells" of the prismatic units), the electrostatic interaction (originating from the unit charges located at the ends of the collagen triple helices), and the interaction energy of the A-units mediated by the solvent. The next level of complexity is related to the fact that micro fibrils were found in the fluorapatite-gelatine nanocomposites. They consist of bundles of triple helical protein molecules, which are embedded within the 3D-hexagonal prismatic arrangement of the A-units. In our approach we consider the microfibrils as chains of flexible dipoles with effective dipole moments. The crystal growth processes is modelled as an energetically controlled stepwise association of elementary building blocks of different kind on a 3D-grid. The remarkable and excellent qualitative agreement between the simulated fibril patterns and the observations made by SEM and TEM support the concept of an intrinsic electric field driven morphogenesis of the fluorapatite-gelatine nanocomposite. The simulated fibril pattern also bears the chance to make fresh attempts in order to find explanations for experimental observations which are not understood up to now.
机译:仿生的氟磷灰石-明胶纳米复合材料的形状发展为微米级,其特征在于分形机理,其起源被固有地编码在(中央)细长的六角棱柱形种子中。种子的3D超结构被明胶微纤维组成的图案明显地覆盖。假定微纤维的取向是由纳米复合材料在种子的发育和生长过程中产生的固有电场控制的。为了确认该假设并获得有关复杂纳米复合材料取向关系的更多详细信息,我们模拟了最大尺寸为urn的图案形成过程。来自原子水平的实验研究和仿真结果的结果支持了一种模型场景,其中聚集的基本构造单元由细长的六角棱柱形对象(A单元)表示,其中心嵌入了胶原三螺旋。因此,A单元的相互作用由三个贡献模型化:晶体能量部分(起源于棱柱形单元的“磷灰石壳”的成对相互作用),静电相互作用(起源于位于晶格处的单元电荷)。 (胶原三螺旋的两个末端),以及由溶剂介导的A单元的相互作用能。复杂性的下一个级别与在氟磷灰石-明胶纳米复合物中发现微纤维有关的事实有关。它们由三重螺旋蛋白质分子束组成,这些分子束嵌入A单元的3D六边形棱柱形排列中。在我们的方法中,我们将微纤维视为具有有效偶极矩的柔性偶极链。晶体生长过程被建模为在3D网格上不同种类的基本构造块的能量受控逐步关联。模拟的原纤维图案与SEM和TEM的观察结果之间出色且极好的定性一致性,支持了由内在电场驱动的氟磷灰石-明胶纳米复合物的形态发生的概念。模拟的原纤维图案也有机会进行新的尝试,以便找到迄今为止尚不了解的实验观察的解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号