首页> 外文期刊>Philosophical Magazine, A. Physics of condensed matter, defects and mechanical properties >Modelling of the Gibbs adsorption at transition-metal-oxide interfaces: effect of the oxygen chemical potential on interfacial bonding, interfacial energy and equilibrium precipitate shape
【24h】

Modelling of the Gibbs adsorption at transition-metal-oxide interfaces: effect of the oxygen chemical potential on interfacial bonding, interfacial energy and equilibrium precipitate shape

机译:过渡金属-氧化物界面上吉布斯吸附的模型:氧化学势对界面键合,界面能和平衡沉淀物形状的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Non-reactive ternary metal-oxide interface are thermodynamically stable over extended ranges of oxygen activities and temperatures. At each condition within this range, the interface adopts a different equilibrium structure and chemistry. A continuum model of the Gibbs adsorption-desorption at transition-metal-oxide interfaces is developed, which predicts interfacial chemistry and modifications in the specific free interfacial energy as a function of oxygen activity. Three oxygen activity domains can be distinguished according to this model: the upper part of the metal-oxide coexistence range characterized by an enrichment in interfacial oxygen, established by adsorption of oxygen at structural vacancies in the case of polar interfaces or by desorption of the less noble metal in the case of mixed interfaces; an intermediate-oxygen-activity range with the interface remaining free of adsorption; a lower-oxygen-activity range, where the interface is enriched in less noble metal by adsorption of excess less noble metal at structural vacancies or by desorption of oxygen. Largest excess concentrations are reached at the limits of the coexistence range; absolute values depend on the ability of the transition metal to undergo partial charge transfer. Any charge transfer across the interface imposes a formal charge in the terminating oxide plane and leads tot he formation of a space charge layer in the oxide. In the present work, defect concentration profiles in the space charge layer are calculated for different oxygen activities and their influence on the cohesive energy is evaluated. The general model is applied to the MgO-Cu system. Computed interfacial occupancies are compare with experimental observations of the chemical bonding at polar and mixed topotactical MgO-Cu interfaces at different oxygen activities (electron-energy-loss near-edge structure studies.) The evolution of relative specific free interfacial energy ratios, inferred from the equilibrium shape of MgO precipitates within a copper matrix and of liquid copper inclusions in a MgO matrix, is compared with model predictions of the interfacial energy of different facets and their evolution with oxygen chemical potential. Qualitative and quantitative agreement between model and experimental results is found. [References: 33]
机译:非反应性三元金属氧化物界面在扩展的氧活度和温度范围内具有热力学稳定性。在此范围内的每个条件下,界面均采用不同的平衡结构和化学性质。建立了过渡金属-氧化物界面上吉布斯吸附-脱附的连续模型,该模型预测了界面化学以及比自由界面能随氧活度的变化。根据该模型可以区分出三个氧活性域:金属氧化物共存范围的上部,其特征在于界面氧的富集,在极性界面的情况下,通过结构空位上的氧的吸附而形成,或者通过解吸较少的氧而建立。混合界面时的贵金属;中间氧活度范围,界面保持无吸附;较低的氧活度范围,其中通过在结构空位处吸附过量的较少的贵金属或通过氧气的解吸,使界面富含较少的贵金属。在共存范围的极限处达到最大的过量浓度。绝对值取决于过渡金属进行部分电荷转移的能力。跨界面的任何电荷转移都会在终止的氧化物平面上施加形式电荷,并导致在氧化物中形成空间电荷层。在本工作中,针对不同的氧活度计算了空间电荷层中的缺陷浓度分布,并评估了它们对内聚能的影响。通用模型适用于MgO-Cu系统。将计算出的界面占有率与在不同氧活度下极性和混合的多官能MgO-Cu界面处的化学键合进行的实验观察结果进行了比较(电子-能量损失近边缘结构研究)。将MgO沉淀物在铜基体内的平衡形状和MgO基质中的液态铜夹杂物的平​​衡形状与模型预测的不同面的界面能及其随氧化学势的演化进行了比较。发现模型和实验结果之间的定性和定量一致性。 [参考:33]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号