首页> 外文期刊>Physical biology >Methods for modeling cytoskeletal and DNA filaments
【24h】

Methods for modeling cytoskeletal and DNA filaments

机译:建模细胞骨架和DNA细丝的方法

获取原文
获取原文并翻译 | 示例
           

摘要

This review summarizes the models that researchers use to represent the conformations and dynamics of cytoskeletal and DNA filaments. It focuses on models that address individual filaments in continuous space. Conformation models include the freely jointed, Gaussian, angle-biased chain (ABC), and wormlike chain (WLC) models, of which the first three bend at discrete joints and the last bends continuously. Predictions from the WLC model generally agree well with experiment. Dynamics models include the Rouse, Zimm, stiff rod, dynamic WLC, and reptation models, of which the first four apply to isolated filaments and the last to entangled filaments. Experiments show that the dynamic WLC and reptation models are most accurate. They also show that biological filaments typically experience strong hydrodynamic coupling and/or constrained motion. Computer simulation methods that address filament dynamics typically compute filament segment velocities from local forces using the Langevin equation and then integrate these velocities with explicit or implicit methods; the former are more versatile and the latter are more efficient. Much remains to be discovered in biological filament modeling. In particular, filament dynamics in living cells are not well understood, and current computational methods are too slow and not sufficiently versatile. Although primarily a review, this paper also presents new statistical calculations for the ABC and WLC models. Additionally, it corrects several discrepancies in the literature about bending and torsional persistence length definitions, and their relations to flexural and torsional rigidities.
机译:这篇综述总结了研究人员用来表示细胞骨架和DNA细丝构象和动力学的模型。它专注于处理连续空间中单个细丝的模型。构形模型包括自由接头,高斯,角度偏置链(ABC)和蠕虫状链(WLC)模型,其中前三个在离散的接头处弯曲,而后三个则连续弯曲。 WLC模型的预测通常与实验非常吻合。动力学模型包括Rouse,Zimm,硬杆,动态WLC和复制模型,其中前四个适用于隔离的细丝,最后四个适用于缠结的细丝。实验表明,动态WLC和复制模型最为准确。他们还表明,生物长丝通常会经历强大的流体动力耦合和/或受约束的运动。解决长丝动力学的计算机仿真方法通常使用Langevin方程从局部力计算长丝段速度,然后将这些速度与显式或隐式方法进行积分;前者用途更广,后者则更有效率。在生物纤维丝建模中仍有许多发现。尤其是,人们对活细胞中的灯丝动力学尚不十分了解,并且当前的计算方法过于缓慢且通用性不足。尽管主要是回顾,但本文还介绍了ABC和WLC模型的新统计计算。此外,它纠正了关于弯曲和扭转持久性长度定义及其与弯曲和扭转刚度的关系的文献中的一些差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号