首页> 外文期刊>Physical chemistry chemical physics: PCCP >A computational pathway for bracketing native-like structures for small alpha helical globular proteins
【24h】

A computational pathway for bracketing native-like structures for small alpha helical globular proteins

机译:包围小阿尔法螺旋球状蛋白的天然结构的计算途径

获取原文
获取原文并翻译 | 示例
           

摘要

Impressive advances in the applications of bioinformatics for protein structure prediction coupled with growing structural databases on one hand and the insurmountable time-scale problem with ab initio computational methods on the other continue to raise doubts whether a computational solution to the protein folding problem categorized as an NP-hard problem - is within reach in the near future. Combining some specially designed biophysical filters and vector algebra tools with ab initio methods, we present here a promising computational pathway for bracketing native-like structures of small alpha helical globular proteins departing from secondary structural information. The automated protocol is initiated by generating multiple structures around the loops between secondary structural elements. A set of knowledge-based biophysical filters namely persistence length and radius of gyration, developed and calibrated on approximately 1000 globular proteins, is introduced to screen the trial structures to filter out improbable candidates for the native and reduce the size of the library of probable structures. The ensemble so generated encompasses a few structures with native-like topology. Monte Carlo optimizations of the loop dihedrals are then carried out to remove steric clashes. The resultant structures are energy minimized and ranked according to a scoring function tested previously on a series of decoy sets vis- a - vis their corresponding natives. We find that the 100 lowest energy structures culled from the ensemble of energy optimized trial structures comprise at least a few to within 3 - 5 angstrom of the native. Thus the formidable "needle in a haystack'' problem is narrowed down to finding an optimal solution amongst a computationally tractable number of alternatives. Encouraging results obtained on twelve small alpha helical globular proteins with the above outlined pathway are presented and discussed.
机译:生物信息学在蛋白质结构预测中的应用取得了令人瞩目的进展,一方面是结构数据库的增长,另一方面是从头算方法无法解决的时标问题,这继续引起人们对蛋白质折叠问题的计算解决方案是否归类为“蛋白质”的怀疑。 NP难题-在不久的将来可以解决。结合了一些专门设计的生物物理过滤器和矢量代数工具与从头算方法,在此我们提出了一种有前途的计算途径,用于包围来自次级结构信息的小α螺旋状球蛋白的天然结构。通过在二级结构元素之间的循环周围生成多个结构来启动自动协议。引入了一组基于知识的生物物理过滤器,即持久性长度和回转半径,已对大约1000种球状蛋白进行了开发和校准,以筛选试验结构,以滤除天然的不太可能的候选物并减少可能的结构库的大小。这样生成的合奏包含了一些具有类似本机拓扑的结构。然后进行环二面体的蒙特卡洛优化,以消除空间冲突。根据先前在一系列诱饵集上对其相对应的本机进行测试的得分函数,对生成的结构进行了能量最小化和排名。我们发现,从能量优化的试验结构集合中挑选出的100个最低能量结构至少包含天然能量的几至3至5埃。因此,将“大海捞针”的难题缩小为在可计算的许多替代方案中寻找最佳解决方案,并提出并讨论了通过上述途径在十二种小α螺旋球蛋白上获得的令人鼓舞的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号