首页> 外文期刊>Photosynthesis Research: An International Journal >Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae)
【24h】

Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae)

机译:Ottelia(Hydrocharitaceae)属中两种淡水大型植物的生化和生物物理CO2浓缩机制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Two freshwater macrophytes, Ottelia alismoides and O. acuminata, were grown at low (mean 5 mu mol L-1) and high (mean 400 mu mol L-1) CO2 concentrations under natural conditions. The ratio of PEPC to RuBisCO activity was 1.8 in O. acuminata in both treatments. In O. alismoides, this ratio was 2.8 and 5.9 when grown at high and low CO2, respectively, as a result of a twofold increase in PEPC activity. The activity of PPDK was similar to, and changed with, PEPC (1.9-fold change). The activity of the decarboxylating NADP-malic enzyme (ME) was very low in both species, while NAD-ME activity was high and increased with PEPC activity in O. alismoides. These results suggest that O. alismoides might perform a type of C-4 metabolism with NAD-ME decarboxylation, despite lacking Kranz anatomy. The C-4-activity was still present at high CO2 suggesting that it could be constitutive. O. alismoides at low CO2 showed diel acidity variation of up to 34 mu equiv g(-1) FW indicating that it may also operate a form of crassulacean acid metabolism (CAM). pH-drift experiments showed that both species were able to use bicarbonate. In O. acuminata, the kinetics of carbon uptake were altered by CO2 growth conditions, unlike in O. alismoides. Thus, the two species appear to regulate their carbon concentrating mechanisms differently in response to changing CO2. O. alismoides is potentially using three different concentrating mechanisms. The Hydrocharitaceae have many species with evidence for C-4, CAM or some other metabolism involving organic acids, and are worthy of further study
机译:两种淡水大型植物Ottelia alismoides和O. acuminata在自然条件下分别以低(平均5μmol L-1)和高(平均400μmol L-1)的CO2浓度生长。在两种处理中,O。acuminata中PEPC与RuBisCO活性的比率均为1.8。在豌豆中,当PEPC活性增加两倍时,在高和低CO2条件下生长时,该比例分别为2.8和5.9。 PPDK的活性与PEPC相似,并随PEPC的变化而变化(变化了1.9倍)。在两个物种中,脱羧化NADP-苹果酸酶(ME)的活性都非常低,而NAD-ME活性较高,并且随着豆中PEPC活性的增加而增加。这些结果表明,尽管缺乏克兰兹解剖学,但是豆薯曲霉可能通过NAD-ME脱羧进行一种C-4代谢。高CO 2浓度下仍存在C-4-活性,表明它可能是组成性的。 O. alismoides在低CO2时显示diel酸度变化高达34 mu equiv g(-1)FW,表明它也可能以一种形式的头孢烷酸代谢(CAM)运转。 pH漂移实验表明,两种物种都可以使用碳酸氢盐。在O. acuminata中,碳吸收的动力学因CO2的生长条件而发生了变化,而在其他条件下,O。alismoides则不同。因此,这两个物种似乎响应于二氧化碳的变化而不同地调节其碳浓缩机制。拟南芥可能正在使用三种不同的浓缩机制。炭疽菌科中有许多物种具有C-4,CAM或其他涉及有机酸的新陈代谢的证据,值得进一步研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号