首页> 外文期刊>Physical biology >Gradient sensing by a bistable regulatory motif enhances signal amplification but decreases accuracy in individual cells
【24h】

Gradient sensing by a bistable regulatory motif enhances signal amplification but decreases accuracy in individual cells

机译:通过双稳态调节基序进行梯度感测可增强信号放大,但会降低单个细胞的准确性

获取原文
获取原文并翻译 | 示例
           

摘要

Many vital eukaryotic cellular functions require the cell to respond to a directional gradient of a signaling molecule. The first two steps in any eukaryotic chemotactic/chemotropic pathway are gradient detection and cell polarization. Like many processes, such chemotactic and chemotropic decisions are made using a relatively small number of molecules and are thus susceptible to internal and external fluctuations during signal transduction. Large cell-to-cell variations in the magnitude and direction of a response are therefore possible and do, in fact, occur in natural systems. In this work we use three-dimensional probabilistic modeling of a simple gradient sensing pathway to study the capacity for individual cells to accurately determine the direction of a gradient, despite fluctuations. We include a stochastic external gradient in our simulations using a novel gradient boundary condition modeling a point emitter a short distance away. We compare and contrast three different variants of the pathway, one monostable and two bistable. The simulation data show that an architecture combining bistability with spatial positive feedback permits the cell to both accurately detect and internally amplify an external gradient. We observe strong polarization in all individual cells, but in a distribution of directions centered on the gradient. Polarization accuracy in our study was strongly dependent upon a spatial positive feedback term that allows the pathway to trade accuracy for polarization strength. Finally, we show that additional feedback links providing information about the gradient to multiple levels in the pathway can help the cell to refine initial inaccuracy in the polarization direction.
机译:许多重要的真核细胞功能需要细胞响应信号分子的方向梯度。任何真核趋化/趋化途径的前两个步骤是梯度检测和细胞极化。像许多过程一样,此类趋化性和趋化性决策是使用相对少量的分子进行的,因此在信号转导过程中易受内部和外部波动的影响。因此,响应的大小和方向可能会出现较大的单元间变化,并且实际上在自然系统中确实会发生。在这项工作中,我们使用简单梯度感应路径的三维概率模型来研究单个细胞准确确定梯度方向的能力,尽管存在波动。我们在模拟中包括了随机外部梯度,使用了一种新颖的梯度边界条件,对距离较近的点发射器进行了建模。我们比较并对比了三种不同的途径,一种是单稳态的,另一种是双稳态的。仿真数据表明,将双稳态与空间正反馈相结合的体系结构使该单元能够准确地检测并内部放大外部梯度。我们在所有单个单元中观察到强极化,但是在以梯度为中心的方向分布中。在我们的研究中,极化精度很大程度上取决于空间正反馈项,该术语使该路径可以将精度换成极化强度。最后,我们证明了提供有关路径中多个层次的梯度的信息的附加反馈链接可以帮助细胞改善极化方向上的初始误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号