...
首页> 外文期刊>Physics in medicine and biology. >Clinical implementation of full Monte Carlo dose calculation in proton beam therapy.
【24h】

Clinical implementation of full Monte Carlo dose calculation in proton beam therapy.

机译:质子束治疗中完整蒙特卡洛剂量计算的临床实施。

获取原文
获取原文并翻译 | 示例
           

摘要

The goal of this work was to facilitate the clinical use of Monte Carlo proton dose calculation to support routine treatment planning and delivery. The Monte Carlo code Geant4 was used to simulate the treatment head setup, including a time-dependent simulation of modulator wheels (for broad beam modulation) and magnetic field settings (for beam scanning). Any patient-field-specific setup can be modeled according to the treatment control system of the facility. The code was benchmarked against phantom measurements. Using a simulation of the ionization chamber reading in the treatment head allows the Monte Carlo dose to be specified in absolute units (Gy per ionization chamber reading). Next, the capability of reading CT data information was implemented into the Monte Carlo code to model patient anatomy. To allow time-efficient dose calculation, the standard Geant4 tracking algorithm was modified. Finally, a software link of the Monte Carlo dose engine to the patient database and the commercial planning system was established to allow data exchange, thus completing the implementation of the proton Monte Carlo dose calculation engine ('DoC++'). Monte Carlo re-calculated plans are a valuable tool to revisit decisions in the planning process. Identification of clinically significant differences between Monte Carlo and pencil-beam-based dose calculations may also drive improvements of current pencil-beam methods. As an example, four patients (29 fields in total) with tumors in the head and neck regions were analyzed. Differences between the pencil-beam algorithm and Monte Carlo were identified in particular near the end of range, both due to dose degradation and overall differences in range prediction due to bony anatomy in the beam path. Further, the Monte Carlo reports dose-to-tissue as compared to dose-to-water by the planning system. Our implementation is tailored to a specific Monte Carlo code and the treatment planning system XiO (Computerized Medical Systems Inc.). However, this work describes the generalchallenges and considerations when implementing proton Monte Carlo dose calculation in a clinical environment. The presented solutions can be easily adopted for other planning systems or other Monte Carlo codes.
机译:这项工作的目的是促进蒙特卡洛质子剂量计算的临床应用,以支持常规治疗计划和交付。蒙特卡洛代码Geant4用于模拟治疗头的设置,包括时间依赖的调制轮模拟(用于宽束调制)和磁场设置(用于束扫描)。可以根据设施的治疗控制系统对任何特定于患者领域的设置进行建模。该代码已针对幻像测量进行了基准测试。使用处理头中电离室读数的模拟,可以以绝对单位(每个电离室读数的Gy)指定蒙特卡洛剂量。接下来,将读取CT数据信息的功能实施到了蒙特卡洛代码中,以对患者的解剖结构进行建模。为了实现省时的剂量计算,对标准的Geant4跟踪算法进行了修改。最终,建立了蒙特卡洛剂量引擎到患者数据库和商业计划系统的软件链接,以允许数据交换,从而完成了质子蒙特卡洛剂量计算引擎('DoC ++')的实现。蒙特卡洛重新计算的计划是重新评估计划过程中决策的宝贵工具。鉴定蒙特卡洛和基于笔形束的剂量计算之间临床上的显着差异也可能会推动当前笔形束方法的改进。例如,分析了四名头颈部肿瘤的患者(总共29个视野)。铅笔光束算法与蒙特卡洛算法之间的差异尤其是在距离近端被识别出来,这既是由于剂量下降,也由于光束路径中的骨解剖结构导致距离预测的总体差异。此外,由计划系统将蒙特卡洛报告的剂量与组织的剂量与水的剂量进行比较。我们的实施是针对特定的蒙特卡洛代码和治疗计划系统XiO(计算机医疗系统公司)量身定制的。但是,这项工作描述了在临床环境中实施质子蒙特卡洛剂量计算时的一般挑战和注意事项。提出的解决方案可以轻松地用于其他计划系统或其他蒙特卡洛代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号