首页> 外文期刊>Physics in medicine and biology. >Dynamic PET reconstruction using temporal patch-based low rank penalty for ROI-based brain kinetic analysis
【24h】

Dynamic PET reconstruction using temporal patch-based low rank penalty for ROI-based brain kinetic analysis

机译:动态PET重建使用基于时间补丁的低秩罚分进行基于ROI的脑动力学分析

获取原文
获取原文并翻译 | 示例
           

摘要

Dynamic positron emission tomography (PET) is widely used to measure changes in the bio-distribution of radiopharmaceuticals within particular organs of interest over time. However, to retain sufficient temporal resolution, the number of photon counts in each time frame must be limited. Therefore, conventional reconstruction algorithms such as the ordered subset expectation maximization (OSEM) produce noisy reconstruction images, thus degrading the quality of the extracted time activity curves (TACs). To address this issue, many advanced reconstruction algorithms have been developed using various spatio-temporal regularizations. In this paper, we extend earlier results and develop a novel temporal regularization, which exploits the self-similarity of patches that are collected in dynamic images. The main contribution of this paper is to demonstrate that the correlation of patches can be exploited using a low-rank constraint that is insensitive to global intensity variations. The resulting optimization framework is, however, non-Lipschitz and non-convex due to the Poisson log-likelihood and low-rank penalty terms. Direct application of the conventional Poisson image deconvolution by an augmented Lagrangian (PIDAL) algorithm is, however, problematic due to its large memory requirements, which prevents its parallelization. Thus, we propose a novel optimization framework using the concave-convex procedure (CCCP) by exploiting the Legendre-Fenchel transform, which is computationally efficient and parallelizable. In computer simulation and a real in vivo experiment using a high-resolution research tomograph (HRRT) scanner, we confirm that the proposed algorithm can improve image quality while also extracting more accurate region of interests (ROI) based kinetic parameters. Furthermore, we show that the total reconstruction time for HRRT PET is significantly accelerated using our GPU implementation, which makes the algorithm very practical in clinical environments.
机译:动态正电子发射断层扫描(PET)被广泛用于测量特定目标器官内放射性药物的生物分布随时间的变化。但是,为了保持足够的时间分辨率,必须限制每个时间帧中光子计数的数量。因此,常规重建算法(例如,有序子集期望最大化(OSEM))会产生嘈杂的重建图像,从而降低提取的时间活动曲线(TAC)的质量。为了解决这个问题,已经使用各种时空正则化开发了许多高级重建算法。在本文中,我们扩展了较早的结果并开发了一种新颖的时间正则化方法,该方法利用了动态图像中收集的色块的自相似性。本文的主要贡献在于证明,可以使用对全局强度变化不敏感的低秩约束来利用补丁的相关性。但是,由于Poisson对数似然和低秩罚分项,最终的优化框架是非Lipschitz和非凸的。然而,由于扩展的拉格朗日(PIDAL)算法直接应用常规的Poisson图像反卷积存在问题,因为它需要大量存储空间,因而无法并行化。因此,我们通过利用Legendre-Fenchel变换,提出了一种使用凹凸过程(CCCP)的新颖的优化框架,该变换计算效率高且可并行化。在计算机仿真和使用高分辨率研究断层扫描仪(HRRT)的真实体内实验中,我们证实了所提出的算法可以改善图像质量,同时还能提取基于运动区域的更准确的感兴趣区域(ROI)。此外,我们证明了使用我们的GPU实施可显着加快HRRT PET的总重建时间,这使得该算法在临床环境中非常实用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号