首页> 外文期刊>Physics in medicine and biology. >Investigation of practical approaches to evaluating cumulative dose for cone beam computed tomography (CBCT) from standard CT dosimetry measurements: a Monte Carlo study
【24h】

Investigation of practical approaches to evaluating cumulative dose for cone beam computed tomography (CBCT) from standard CT dosimetry measurements: a Monte Carlo study

机译:从标准CT剂量学测量评估锥束计算机断层扫描(CBCT)累积剂量的实用方法的研究:蒙特卡洛研究

获取原文
获取原文并翻译 | 示例
           

摘要

A function called G(x)(L) was introduced by the International Commission on Radiation Units and Measurements (ICRU) Report-87 to facilitate measurement of cumulative dose for CT scans within long phantoms as recommended by the American Association of Physicists in Medicine (AAPM) TG-111. The G(x)(L) function is equal to the ratio of the cumulative dose at the middle of a CT scan to the volume weighted CTDI (CTDIvol), and was investigated for conventional multi-slice CT scanners operating with a moving table. As the stationary table mode, which is the basis for cone beam CT (CBCT) scans, differs from that used for conventional CT scans, the aim of this study was to investigate the extension of the G(x)(L) function to CBCT scans. An On-Board Imager (OBI) system integrated with a TrueBeam linac was simulated with Monte Carlo EGSnrc/BEAMnrc, and the absorbed dose was calculated within PMMA, polyethylene (PE), and water head and body phantoms using EGSnrc/DOSXYZnrc, where the body PE body phantom emulated the ICRU/AAPM phantom. Beams of width 40-500 mm and beam qualities at tube potentials of 80-140 kV were studied. Application of a modified function of beam width (W) termed G(x)(W), for which the cumulative dose for CBCT scans f(0) is normalized to the weighted CTDI (CTDIw) for a reference beam of width 40 mm, was investigated as a possible option. However, differences were found in G(x)(W) with tube potential, especially for body phantoms, and these were considered to be due to differences in geometry between wide beams used for CBCT scans and those for conventional CT. Therefore, a modified function G(x)(W)(100) has been proposed, taking the form of values of f(0) at each position in a long phantom, normalized with respect to dose indices f(100)(150)(x) measured with a 100 mm pencil ionization chamber within standard 150 mm PMMA phantoms, using the same scanning parameters, beam widths and positions within the phantom. f(100)(150)(x) averages the dose resulting from a CBCT scan over the 100 mm length. Like the G(x)(L) function, the G(x)(W)(100) function showed only a weak dependency on tube potential at most positions for the phantoms studied. The results were fitted to polynomial equations from which f (0) within the longer PMMA, PE, or water phantoms can be evaluated from measurements of f(100)(150)(x). Comparisons with other studies, suggest that these functions may be suitable for application to any CT or CBCT scan acquired with stationary table mode.
机译:国际放射单位和测量委员会(ICRU)Report-87引入了一种称为G(x)(L)的功能,以方便测量长体模中CT扫描的累积剂量,这是美国医学物理学家协会( AAPM)TG-111。 G(x)(L)函数等于CT扫描过程中的累积剂量与体积加权CTDI(CTDIvol)的比值,并且已针对使用移动工作台的常规多层CT扫描仪进行了研究。由于作为锥束CT(CBCT)扫描基础的固定台模式不同于常规CT扫描,因此本研究的目的是研究G(x)(L)函数对CBCT的扩展扫描。使用Monte Carlo EGSnrc / BEAMnrc模拟与TrueBeam直线加速器集成的车载成像器(OBI)系统,并使用EGSnrc / DOSXYZnrc在PMMA,聚乙烯(PE)以及水头和人体模型中计算吸收剂量,其中body PE人体模型模拟了ICRU / AAPM体模。研究了宽度为40-500 mm的光束以及在80-140 kV的管电势下的光束质量。应用称为G(x)(W)的光束宽度(W)的修正函数,针对40 mm的参考光束,将CBCT扫描的累积剂量f(0)归一化为加权CTDI(CTDIw),被调查为可能的选择。但是,在G(x)(W)的管电位中发现了差异,尤其是对于人体模型,这些差异被认为是由于用于CBCT扫描的宽光束与用于常规CT的宽光束之间的几何差异。因此,提出了一种修正函数G(x)(W)(100),采用长体模中每个位置处f(0)的值的形式,并针对剂量指数f(100)(150)进行了归一化(x)使用标准的150 mm PMMA幻象在100 mm铅笔电离室中进行测量,并使用相同的扫描参数,射束宽度和幻象中的位置。 f(100)(150)(x)对100 mm长度的CBCT扫描得出的平均剂量。像G(x)(L)函数一样,G(x)(W)(100)函数在所研究的幻像的大多数位置上仅显示出对管电势的弱依赖性。将结果拟合到多项式方程,从中可以从f(100)(150)(x)的测量值评估较长的PMMA,PE或水体模中的f(0)。与其他研究的比较表明,这些功能可能适用于以固定台模式采集的任何CT或CBCT扫描。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号