...
首页> 外文期刊>Philosophical transactions of the Royal Society. Mathematical, physical, and engineering sciences >Flat-panel electronic displays: a triumph of physics, chemistry and engineering
【24h】

Flat-panel electronic displays: a triumph of physics, chemistry and engineering

机译:平板电子显示器:物理学,化学和工程学的胜利

获取原文
           

摘要

This paper describes the history and science behind the development of modern flatpanel displays, and assesses future trends. Electronic displays are an important feature of modern life. For many years the cathode ray tube, an engineering marvel, was universal, but its shape was cumbersome and its operating voltage too high. The need for a flatpanel display, working at a low voltage, became imperative, and much research has been applied to this need. Any versatile flat-panel display will exploit an electro-optical effect, a transparent conductor and an addressing system to deliver data locally. The first need is to convert an electrical signal into a visible change. Two methods are available, the first giving emission of light, the second modulating ambient illumination. The most useful light-emitting media are semiconductors, historically exploiting III–V or II–VI compounds, but more recently organic or polymer semiconductors. Another possible effect uses gas plasma discharges. The modulating, or subtractive, effects that have been studied include liquid crystals, electrophoresis, electrowetting and electrochromism. A transparent conductor makes it possible to apply a voltage to an extended area while observing the results. The design is a compromise, since the free electrons that carry current also absorb light. The first materials used were metals, but some semiconductors, when heavily doped, give a better balance, with high transmission for a low resistance. Delivering data unambiguously to a million or so picture elements across the display area is no easy task. The preferred solution is an amorphous silicon thin-film transistor deposited at each cross-point in an X–Y matrix. Success in these endeavours has led to many applications for flat-panel displays, including television, flexible displays, electronic paper, electronic books and advertising signs.
机译:本文介绍了现代平板显示器发展的历史和科学,并评估了未来的趋势。电子显示器是现代生活的重要特征。多年来,阴极射线管一直是工程奇迹,但它的形状笨重且工作电压过高。对在低压下工作的平板显示器的需求变得迫在眉睫,为此已经进行了很多研究。任何通用的平板显示器都将利用电光效应,透明导体和寻址系统在本地传输数据。首先需要将电信号转换为可见的变化。有两种方法可用,第一种是发出光,第二种是调制环境照明。最有用的发光介质是半导体,历史上一直使用III-V或II-VI化合物,但最近使用有​​机或聚合物半导体。另一个可能的效果是使用气体等离子体放电。已研究的调节或减法效应包括液晶,电泳,电润湿和电致变色。透明导体可以在观察结果的同时向扩展区域施加电压。这种设计是一种折衷,因为携带电流的自由电子也会吸收光。最初使用的材料是金属,但是某些半导体在重掺杂时可以达到更好的平衡,并具有高透射率和低电阻。要在整个显示区域中将数据毫不含糊地传递到一百万个左右的图像元素上并非易事。优选的解决方案是在X-Y矩阵的每个交叉点处沉积非晶硅薄膜晶体管。这些努力的成功导致了平板显示器的许多应用,包括电视,柔性显示器,电子纸,电子书和广告标牌。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号