首页> 外文期刊>Physics in medicine and biology. >Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields.
【24h】

Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields.

机译:冲击波碎石术(SWL)中的机械溶血:I.由于SWL流场而引起的细胞变形分析。

获取原文
获取原文并翻译 | 示例
       

摘要

This work analyses the interaction of red blood cells (RBCs) with shock-induced and bubble-induced flows in shock wave lithotripsy (SWL), and calculates, in vitro, the lytic effects of these two flows. A well known experimentally observed fact about RBC membranes is that the lipid bilayer disrupts when subjected to an areal strain (deltaA/A)c of 3%, and a corresponding, critical, isotropic tension, Tc, of 10 mN m(-1) (1 mN m(-1) = 1 dyne cm(-1)). RBCs suspended in a fluid medium tend to deform in accordance with the deformation of the surrounding fluid medium. The fluid flow-field is lytically effective if the membrane deformation exceeds the above threshold value. From kinematic analysis, motion of an elementary fluid particle can always be decomposed into a uniform translation, an extensional flow (e.g. -->uinfinity(x, y, z) = (k(t)x, -k(t)y, 0)) along three mutually perpendicular axes, and a rigid rotation of these axes. However, only an extensional flow causes deformation of a fluid particle, and consequently deforms the RBC membrane. In SWL, a fluid flow-field, induced by a non-uniform shock wave, as well as radial expansion/implosion of a bubble, has been hypothesized to cause lysis of cells. Both the above flow-fields constitute an unsteady, extensional flow, which exerts inertial as well as viscous forces on the RBC membrane. The transient inertial force (expressed as a tension, or force/length), is given by Tiner approximately rhor(c)3k/tau, where tau is a timescale of the transient flow and r(c) is a characteristic cell size. When the membrane is deformed due to inertial effects, membrane strain is given by deltaA/A approximately ktau. The transient viscous force is given by Tvisc approximately rho(nu/tau)1/2r(c)2k, where rho and nu are the fluid density and kinematic viscosity. For the non-uniform shock, the extensional flow exerts an inertial force, Tiner approximately 64 mN m(-1), for a duration of 3 ns, sufficient to induce pores in the RBC membrane. For a radial flow-field, induced by bubble expansion/implosion, the inertial forces are of a magnitude 100 mN m(-1), which last for a duration of 1 micros, sufficient to cause rupture. Bubble-induced radial flow is predicted to be lytically more effective than shock-induced flow in typical in vitro experimental conditions.
机译:这项工作分析了红细胞(RBCs)与激波碎石术(SWL)中激波和气泡引起的血流的相互作用,并在体外计算了这两种血流的裂解作用。关于RBC膜的众所周知的实验观察事实是,脂质双层受到3%的面应变(deltaA / A)c和相应的临界各向同性张力Tc为10 mN m(-1)时会破坏(1 mN m(-1)= 1达因cm(-1))。悬浮在流体介质中的RBC倾向于根据周围流体介质的变形而变形。如果膜变形超过上述阈值,则流体流场具有溶解性。通过运动学分析,基本流体粒子的运动始终可以分解为均匀的平移,即扩展流(例如-> uinfinity(x,y,z)=(k(t)x,-k(t)y, 0))沿三个相互垂直的轴,以及这些轴的刚性旋转。然而,仅拉伸流动引起流体颗粒的变形,并因此使RBC膜变形。在SWL中,已经假设由不均匀的冲击波以及气泡的径向膨胀/内爆引起的流体流场会引起细胞裂解。以上两个流场都构成了不稳定的扩展流,该流在RBC膜上施加了惯性力和粘性力。瞬态惯性力(表示为张力或力/长度)由Tiner近似为rhor(c)3k / tau给出,其中tau是瞬态流的时间尺度,r(c)是特征单元尺寸。当膜由于惯性作用而变形时,膜应变由大约ktau的deltaA / A给出。 Tvisc给出的瞬时粘性力约为rho(nu / tau)1 / 2r(c)2k,其中rho和nu是流体密度和运动粘度。对于不均匀的冲击,拉伸流会施加惯性力Tiner约64 mN m(-1),持续3 ns的时间,足以在RBC膜上产生孔。对于由气泡膨胀/内爆引起的径向流场,惯性力的大小为100 mN m(-1),其持续时间为1微秒,足以引起破裂。在典型的体外实验条件下,预计气泡引起的径向流动比冲击引起的径向流动更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号