首页> 外文期刊>Physics essays >Exact Classical Quantum-Mechanical Solutions for One- through Twenty-Electron Atoms
【24h】

Exact Classical Quantum-Mechanical Solutions for One- through Twenty-Electron Atoms

机译:一到二十个电子原子的精确经典量子力学解决方案

获取原文
获取原文并翻译 | 示例
       

摘要

It is true that the Schrodinger equation can be solved exactly for the hydrogen atom, although it is not true that the result is the exact solution of the hydrogen atom. Electron spin is missed entirely, and there are many internal inconsistencies and nonphysical consequences that do not agree with experimental results. The Dirac equation does not reconcile this situation. Many additional shortcomings arise, such as instability to radiation, negative kinetic energy states, intractable infinities, virtual particles at every point in space, the Klein paradox, violation of Einstein causality, and "spooky " action at a distance. Despite its successes, quantum mechanics (QM) has remained mysterious to all who have encountered it. Starting with Bohr and progressing into the present, the departure from intuitive physical reality has widened. The connection between QM and reality is more than just a "philosophical" issue. It reveals that QM is not a correct or complete theory of the physical world and that inescapable internal inconsistencies and incongruities arise when attempts are made to treat it as a physical as opposed to a purely mathematical "tool. " Some of these issues are discussed in a review by Laloe [Am. J. Phys. 69, 655 (2001)]. But QM has severe limitations even as a tool. Beyond one-electron atoms, multielectron-atom quantum-mechanical equations cannot be solved except by approximation methods involving adjustable-parameter theories (perturbation theory, variational methods, self-consistent field method, multicon-figuration Hartree-Fock method, multiconfiguration parametric potential method, 1/Z expansion method, multiconfiguration Dirac-Fock method, electron correlation terms, QED terms, etc.), all of which contain assumptions that cannot be physically tested and are not consistent with physical laws. In an attempt to provide some physical insight into atomic problems and starting with the same essential physics as Bohr of e" moving in the Coulombic field of the proton and the wave equation as modified after Schrodinger, a classical, approach was explored, yielding a model that is remarkably accurate and provides insight into physics on the atomic level [R.L. Mills, Phys. Essays 16, 433 (2003); 17, 342 (2004); The Grand Unified Theory of Classical Quantum Mechanics (BlackLight Power, Inc., Cranbury, NJ, 2005)]. Physical laws and intuition are restored when dealing with the wave equation and quantum-mechanical problems.
机译:确实可以为氢原子精确地求解薛定inger方程,尽管其结果并非是氢原子的精确解,这是不正确的。电子自旋被完全遗漏,并且存在许多内部不一致和非物理后果,这些与实验结果不一致。狄拉克方程式无法调和这种情况。还会出现许多其他缺点,例如对辐射的不稳定性,负的动能状态,棘手的无限性,空间中每个点的虚拟粒子,克莱因悖论,爱因斯坦因果关系的违反以及远距离的“怪异”作用。尽管取得了成功,但量子力学(QM)对于所有遇到过它的人来说仍然是个谜。从玻尔开始,一直发展到现在,对直观物理现实的背离已经扩大。质量管理与现实之间的联系不仅仅是一个“哲学”问题。它表明,质量管理不是对物理世界的正确或完整的理论,当试图将其视为物理而非纯粹的数学“工具”时,不可避免的内部矛盾和不一致会出现。 Laloe的评论[Am。 J.物理69,655(2001)]。但是,即使作为一种工具,质量管理也有严格的限制。除了单电子原子外,多电子原子量子力学方程式无法解决,除非采用涉及可调参数理论的近似方法(扰动理论,变分方法,自洽场方法,多构图哈氏树-福克方法,多构型参量势方法) ,1 / Z扩展方法,多配置Dirac-Fock方法,电子相关项,QED项等),所有这些假设均包含无法进行物理测试且与物理定律不一致的假设。为了提供对原子问题的一些物理见解,并以与e“的玻尔在质子的库仑​​场中移动相同的基本物理学和在薛定inger之后修改的波动方程开始,探索了经典方法,从而产生了模型这种方法非常准确,可以提供原子级的物理学见解[RL Mills,Phys.Essays 16,433(2003); 17,342(2004);经典量子力学的大统一理论(BlackLight Power,Inc.,Cranbury ,NJ,2005)]。处理波动方程和量子力学问题时,物理定律和直觉得以恢复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号