首页> 外文期刊>Petroleum Science and Technology >Effects of Ion Advection and Thermal Convection on Pore Pressure Changes in High Permeable Chemically Active Shale Formations
【24h】

Effects of Ion Advection and Thermal Convection on Pore Pressure Changes in High Permeable Chemically Active Shale Formations

机译:离子对流和热对流对高渗透化学活性页岩地层孔隙压力变化的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Wellbore instability problems arc often encountered while drilling in water active shales due to changes in pore pressure. The change in pore pressure is caused by hydraulic, thermal, chemical, and electrical potential gradients. In all previous studies it has been found that the effects of ion advection and thermal convection have a negligible effect on changes in pore pressure for a range of very low permeable shale formations (> 10~(-5) md). This is an appropriate assumption for very low permeable shale formations. For high permeable shale formations (e.g., shale with a disseminated microfissure network), however, thermal convection and ion advection can play a significant role. The authors present a hydro-chemo-thermo-electrical model based on finite element method to investigate the effect of advection on ion transfer and thermal convection on temperature and their combined effect on pore pressure in shale formations. All equations are based on the thermodynamics of irreversible processes in a discontinuous system. The characteristic Galerkin discretization method is used to stabilize the solution of advection and convection equations in the finite clement approach. Results of this study revealed that ion and heat transfer are controlled primarily by permeability of the shale formations. Movement of fluid into or out of the formation is due to a combination of hydraulic, chemical, electrical, and thermal osmotic flow. Results have also shown that in high permeable shale formations the chemical potential gradient between the pore fluid and drilling fluid reaches equilibrium faster than in low permeable shale formations. This is mainly due to the advection of ion from drilling fluid to the shale formation.
机译:由于孔隙压力的变化,在水活性页岩中钻井时经常遇到井眼失稳问题。孔隙压力的变化是由水力,热,化学和电势梯度引起的。在所有先前的研究中,已经发现,离子对流和热对流对一系列极低渗透性页岩地层(> 10〜(-5)md)的孔隙压力变化的影响可忽略不计。对于渗透率极低的页岩地层,这是一个适当的假设。但是,对于高渗透性页岩地层(例如,具有分散的微裂缝网络的页岩),热对流和离子对流可以发挥重要作用。作者提出了一种基于有限元方法的水化学热电模型,以研究平流对离子传递和热对流对温度的影响及其对页岩地层孔隙压力的综合影响。所有方程均基于不连续系统中不可逆过程的热力学。特征Galerkin离散化方法用于稳定有限元方法中对流方程和对流方程的解。这项研究的结果表明,离子和热传递主要受页岩地层渗透性的控制。流体进出地层的运动是由于液压,化学,电气和热渗透流的结合。结果还表明,在高渗透性页岩地层中,孔隙流体和钻井液之间的化学势梯度比低渗透性页岩地层中的化学势梯度更快地达到平衡。这主要是由于离子从钻井液到页岩地层的平流作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号