...
首页> 外文期刊>Fuel >Inverted U-shaped permeability enhancement due to thermally induced desorption determined from strain-based analysis of experiments on shale at constant pore pressure
【24h】

Inverted U-shaped permeability enhancement due to thermally induced desorption determined from strain-based analysis of experiments on shale at constant pore pressure

机译:由于在恒定孔隙压力下的基于菌株的实验中确定了倒置U形渗透性增强

获取原文
获取原文并翻译 | 示例

摘要

We explore the impact of thermally induced desorption on permeability evolution in shale at constant pore pressure. Permeability loss due to thermal expansion of mineral aggregates competes with permeability enhancement due to thermal desorption and shrinkage with increasing temperature. In experiments using core plugs of Marcellus shale, permeability increases 20% from 296 to 322 K for a pre-fractured sample and 11% from 304 to 334 K for an intact sample. Dynamic bulk modulus decreases from 14.6 to 11.8 GPa when permeability increases from 2.8 to 3.1.10- 21 m2, suggesting that pore volume is expanding due to desorption. We develop a model for thermal-sorptive permeability enhancement that accounts for pore evolution due to overprinted but competitive thermal and sorptive strains. A scaling factor between 0 and 1 is included to account for the volumetric boundary condition ranging from free boundary expansion to fixed bulk volume. The change in fracture aperture is directly impacted by fracture density. While permeability evolution in shales is generally characterized by a "U" shaped behavior with increasing pore pressure, our model shows that thermally induced permeability evolution at constant pore pressure is characterized as an inverted "U". This is due to permeability enhancement at temperatures close to the reference temperature and permeability loss at higher temperatures. We attribute this to larger changes in adsorbed volume at lower temperatures competing with linear thermal strain that then outpaces desorption at higher temperatures. Both thermal and sorptive strains are modulated by the mineral distribution within the shale. Discretized images of mineral distribution suggest that there may be a larger local permeability enhancement than predicted by bulk strain measurements alone, due to the concentration of porosity near sorptive components. Our results include a novel analysis of permeability evolution due to desorption at constant pore pressure.
机译:我们探讨了热诱导解吸对恒定孔隙压力渗透性进化的影响。由于热解吸和收缩,由于热解吸和收缩,由于温度较高,由于热解吸和收缩而导致的渗透性损失具有渗透性增强。在使用Marcellus页岩的核心塞进行实验中,渗透率从296〜322K增加20%,对于预裂缝样品,11%从304至334K形成完整样品。当渗透率从2.8增加到3.1.10-11m 2增加时,动态体积模量从14.6增加到11.8GPa,表明孔隙体积由于解吸而膨胀。我们开发了一种用于热吸附渗透性增强的模型,该模型占孔隙演化而导致的孔隙演化而令人兴奋的热和吸附菌株。包括在0和1之间的缩放因子以解释从自由边界扩展到固定散装体积的体积边界条件。骨折孔的变化直接受断裂密度的影响。虽然Shales中的渗透性演变通常具有孔隙压力的增加的“U”形状,但我们的模型表明,在恒定孔隙压力下的热诱导渗透性蒸变的特征在于倒置的“U”。这是由于在靠近参考温度和较高温度下的渗透性损失的温度下的渗透性增强。我们将这种情况归因于较低温度的吸附体积的较大变化,其线性热应变竞争,然后在较高温度下的解吸分离。热和吸附菌株都被页岩内的矿物分布调节。由于吸附成分附近的孔隙率浓度,矿物分布的离散图像表明,可能比单独的散装菌株测量所预测的局部渗透性增加。我们的结果包括由于在恒定孔隙压力下解吸而产生的新型渗透性进化分析。

著录项

  • 来源
    《Fuel 》 |2021年第15期| 121178.1-121178.12| 共12页
  • 作者单位

    Penn State Univ EMS Energy Inst Dept Energy & Mineral Engn University Pk PA 16802 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号