...
首页> 外文期刊>Paleobiology >A new approach using high-resolution computed tomography to test the buoyant properties of chambered cephalopod shells
【24h】

A new approach using high-resolution computed tomography to test the buoyant properties of chambered cephalopod shells

机译:一种使用高分辨率计算机断层扫描技术测试带腔头足类动物壳浮力特性的新方法

获取原文
获取原文并翻译 | 示例
           

摘要

The chambered shell of modern cephalopods functions as a buoyancy apparatus, allowing the animal to enter the water column without expending a large amount of energy to overcome its own weight. Indeed, the chambered shell is largely considered a key adaptation that allowed the earliest cephalopods to leave the ocean floor and enter the water column. It has been argued by some, however, that the iconic chambered shell of Paleozoic and Mesozoic ammonoids did not provide a sufficiently buoyant force to compensate for the weight of the entire animal, thus restricting ammonoids to a largely benthic lifestyle reminiscent of some octopods. Here we develop a technique using high-resolution computed tomography to quantify the buoyant properties of chambered shells without reducing the shell to ideal spirals or eliminating inherent biological variability by using mathematical models that characterize past work in this area. This technique has been tested on Nautilus pompilius and is now extended to the extant deep-sea squid Spirula spirula and the Jurassic ammonite Cadoceras sp. hatchling. Cadoceras is found to have possessed near-neutral to positive buoyancy if hatched when the shell possessed between three and five chambers. However, we show that the animal could also overcome degrees of negative buoyancy through swimming, similar to the paralarvae of modern squids. These calculations challenge past inferences of benthic life habits based solely on calculations of negative buoyancy. The calculated buoyancy of Cadoceras supports the possibility of planktonic dispersal of ammonite hatchlings. This information is essential to understanding ammonoid ecology as well as biotic interactions and has implications for the interpretation of geochemical data gained from the isotopic analysis of the shell.
机译:现代头足类动物的腔室外壳起着浮力的作用,使动物无需花费大量能量即可克服自身重量而进入水柱。确实,有腔的壳在很大程度上被认为是一种关键的适应方法,它允许最早的头足类动物离开海底进入水柱。然而,有些人认为,标志性的古生和中生铵盐类腔室壳并不能提供足够的浮力来补偿整个动物的体重,因此将铵类类动物限制在很大程度上是底栖动物的生活中,让人联想到某些章鱼。在这里,我们开发了一种技术,该技术使用高分辨率计算机断层扫描技术来量化带腔壳的浮力特性,而不会通过使用表征该领域过去工作的数学模型将壳减小到理想的螺旋状或消除固有的生物学变异性。此技术已在鹦鹉螺(Nautilus pompilius)上进行了测试,现已扩展到现存的深海鱿鱼螺旋藻(Spirula spirula)和侏罗纪mon石Cadoceras sp。孵化。如果贝壳在三到五个舱之间时孵化,发现Cadoceras具有近乎中性至正浮力。但是,我们证明该动物也可以通过游泳克服负浮力的程度,类似于现代鱿鱼的幼体。这些计算仅根据负浮力的计算挑战了过去的底栖生活习惯推论。计算得出的Cadoceras浮力支持了铵盐孵化场浮游式散布的可能性。该信息对于理解氨类生态以及生物相互作用至关重要,并且对解释从壳的同位素分析获得的地球化学数据具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号