首页> 外文期刊>Celestial Mechanics and Dynamical Astronomy: An international journal of space dynamics >Tidal synchronization of close-in satellites and exoplanets. A rheophysical approach
【24h】

Tidal synchronization of close-in satellites and exoplanets. A rheophysical approach

机译:近距离卫星和系外行星的潮汐同步。流变方法

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a new theory of the dynamical tides of celestial bodies. It is founded on a Newtonian creep instead of the classical delaying approach of the standard viscoelastic theories and the results of the theory derive mainly from the solution of a non-homogeneous ordinary differential equation. Lags appear in the solution but as quantities determined from the solution of the equation and are not arbitrary external quantities plugged in an elastic model. The resulting lags of the tide components are increasing functions of their frequencies (as in Darwin's theory), but not small quantities. The amplitudes of the tide components depend on the viscosity of the body and on their frequencies; they are not constants. The resulting stationary rotations (often called pseudo-synchronous) have an excess velocity roughly proportional to 6ne~2/(χ + χ~(-2)) (χ is the mean-motion in units of one critical frequency-the relaxation factor-inversely proportional to the viscosity) instead of the exact 6ne~2 of standard theories. The dissipation in the pseudo-synchronous solution is inversely proportional to (χ + χ~(-1)); thus, in the inviscid limit, it is roughly proportional to the frequency (as in standard theories), but that behavior is inverted when the viscosity is high and the tide frequency larger than the critical frequency. For free rotating bodies, the dissipation is given by the same law, but now χ is the frequency of the semi-diurnal tide in units of the critical frequency. This approach fails, however, to reproduce the actual tidal lags on Earth. In this case, to reconcile theory and observations, we need to assume the existence of an elastic tide superposed to the creeping tide. The theory is applied to several Solar System and extrasolar bodies and currently available data are used to estimate the relaxation factor γ (i.e. the critical frequency) of these bodies.
机译:本文提出了一种新的天体动力学潮流理论。它基于牛顿蠕变而不是标准粘弹性理论的经典延迟方法,并且该理论的结果主要来自于非齐次常微分方程的解。滞后出现在解决方案中,但作为从方程式的解中确定的量出现,并不是在弹性模型中插入的任意外部量。潮汐成分的滞后是其频率函数的增加(如达尔文理论),但数量不小。潮汐分量的振幅取决于身体的黏度及其频率。它们不是常数。产生的静止旋转(通常称为伪同步旋转)具有大约与6ne〜2 /(χ+χ〜(-2))成比例的过剩速度(χ是一个临界频率单位的平均运动-弛豫因子-与粘度成反比),而不是标准理论的精确6ne〜2。伪同步解中的耗散与(χ+χ〜(-1))成反比。因此,在无粘性的范围内,它大致与频率成正比(如在标准理论中一样),但是当粘度较高且潮汐频率大于临界频率时,该行为会反转。对于自由旋转的物体,耗散由相同的定律给出,但现在χ是半日潮的频率,以临界频率为单位。但是,这种方法无法重现地球上的实际潮汐滞后。在这种情况下,为了调和理论和观察结果,我们需要假设存在一个叠加在蠕变潮上的弹性潮。该理论适用于几个太阳系和太阳系外体,目前可利用的数据用于估计这些天体的弛豫因子γ(即临界频率)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号