首页> 外文期刊>Superconductor Science & Technology >A scalable readout system for a superconducting adiabatic quantum optimization system
【24h】

A scalable readout system for a superconducting adiabatic quantum optimization system

机译:用于超绝热量子优化系统的可扩展读出系统

获取原文
获取原文并翻译 | 示例
           

摘要

We have designed, fabricated and tested an XY-addressable readout system that is specifically tailored for the reading of superconducting flux qubits in an integrated circuit that could enable adiabatic quantum optimization. In such a system, the flux qubits only need to be read at the end of an adiabatic evolution when quantum mechanical tunneling has been suppressed, thus simplifying many aspects of the readout process. The readout architecture for an N-qubit adiabatic quantum optimization system comprises N hysteretic dc SQUIDs and N rf SQUID latches controlled by 2√N + 2 bias lines. The latching elements are coupled to the qubits and the dc SQUIDs are then coupled to the latching elements. This readout scheme provides two key advantages: first, the latching elements provide exceptional flux sensitivity that significantly exceeds what may be achieved by directly coupling the flux qubits to the dc SQUIDs using a practical mutual inductance. Second, the states of the latching elements are robust against the influence of ac currents generated by the switching of the hysteretic dc SQUIDs, thus allowing one to interrogate the latching elements repeatedly so as to mitigate the effects of stochastic switching of the dc SQUIDs. We demonstrate that it is possible to achieve single-qubit read error rates of<10~(?6) with this readout scheme. We have characterized the system level performance of a 128-qubit readout system and have measured a readout error probability of 8 × 10~(?5) in the presence of optimal latching element bias conditions.
机译:我们已经设计,制造和测试了XY可寻址的读出系统,该系统专门为读取集成电路中的超导通量量子位而量身定制,可以实现绝热量子优化。在这样的系统中,当量子力学隧穿被抑制时,仅需要在绝热演化结束时读取通量量子位,从而简化了读取过程的许多方面。 N量子位绝热量子优化系统的读出架构包括N个磁滞dc SQUID和N rf SQUID锁存器,这些锁存器由2√N+ 2条偏置线控制。锁存元件耦合到量子位,然后dc SQUID耦合到锁存元件。这种读出方案具有两个关键优势:首先,锁存元件具有出色的磁通灵敏度,大大超过了通过使用实际互感将磁通量子位直接耦合到dc SQUID所实现的灵敏度。第二,锁存元件的状态对于抵抗由滞后dc SQUID的切换产生的交流电流的影响是鲁棒的,从而允许人们反复询问锁存元件,以减轻dc SQUID的随机切换的影响。我们证明,使用这种读出方案可以实现<10〜(?6)的单量子位读取错误率。我们已经表征了128量子位读出系统的系统级性能,并且在存在最佳闩锁元件偏置条件的情况下,测得的读出错误概率为8×10〜(?5)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号