...
首页> 外文期刊>Chemical Society Reviews >High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery
【24h】

High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery

机译:高容量储氢材料:汽车应用的属性和材料发现技术

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Widespread adoption of hydrogen as a vehicular fuel depends critically upon the ability to store hydrogen on-board at high volumetric and gravimetric densities, as well as on the ability to extract/insert it at sufficiently rapid rates. As current storage methods based on physical means-high-pressure gas or (cryogenic) liquefaction-are unlikely to satisfy targets for performance and cost, a global research effort focusing on the development of chemical means for storing hydrogen in condensed phases has recently emerged. At present, no known material exhibits a combination of properties that would enable high-volume automotive applications. Thus new materials with improved performance, or new approaches to the synthesis and/or processing of existing materials, are highly desirable. In this critical review we provide a practical introduction to the field of hydrogen storage materials research, with an emphasis on (i) the properties necessary for a viable storage material, (ii) the computational and experimental techniques commonly employed in determining these attributes, and (iii) the classes of materials being pursued as candidate storage compounds. Starting from the general requirements of a fuel cell vehicle, we summarize how these requirements translate into desired characteristics for the hydrogen storage material. Key amongst these are: (a) high gravimetric and volumetric hydrogen density, (b) thermodynamics that allow for reversible hydrogen uptake/release under near-ambient conditions, and (c) fast reaction kinetics. To further illustrate these attributes, the four major classes of candidate storage materials-conventional metal hydrides, chemical hydrides, complex hydrides, and sorbent systems-are introduced and their respective performance and prospects for improvement in each of these areas is discussed. Finally, we review the most valuable experimental and computational techniques for determining these attributes, highlighting how an approach that couples computational modeling with experiments can significantly accelerate the discovery of novel storage materials (155 references).
机译:氢作为车辆燃料的广泛采用关键取决于在船上以高体积和重量密度存储氢的能力,以及以足够快的速率提取/插入氢的能力。由于基于物理手段(高压气体或(低温)液化)的当前存储方法不太可能满足性能和成本的目标,因此最近出现了一项全球研究工作,重点是开发用于在冷凝相中存储氢的化学手段。目前,没有已知的材料具有能够实现大批量汽车应用的性能组合。因此,非常需要具有改善的性能的新材料或用于合成和/或加工现有材料的新方法。在这篇重要的评论中,我们为氢存储材料研究领域提供了实用的介绍,重点是(i)可行的存储材料必需的特性,(ii)确定这些属性常用的计算和实验技术,以及(iii)用作候选存储化合物的材料类别。从燃料电池汽车的一般要求出发,我们总结了这些要求如何转化为储氢材料的所需特性。其中的关键是:(a)重量和体积氢密度高,(b)允许在接近环境条件下可逆地吸收/释放氢的热力学,以及(c)快速的反应动力学。为了进一步说明这些属性,介绍了四种主要的候选存储材料类别:常规金属氢化物,化学氢化物,复合氢化物和吸附剂系统,并讨论了它们在每个领域中各自的性能和改进前景。最后,我们回顾了用于确定这些属性的最有价值的实验和计算技术,重点介绍了将计算模型与实验结合起来的方法如何显着加快新型存储材料的发现(155篇参考文献)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号