首页> 外文期刊>Structural and multidisciplinary optimization >Integrating variable wind load, aerodynamic, and structural analyses towards accurate fatigue life prediction in composite wind turbine blades
【24h】

Integrating variable wind load, aerodynamic, and structural analyses towards accurate fatigue life prediction in composite wind turbine blades

机译:综合可变风载荷,空气动力学和结构分析,以准确预测复合材料风力涡轮机叶片的疲劳寿命

获取原文
获取原文并翻译 | 示例
           

摘要

A comprehensive fatigue analysis framework for composite wind turbine blades has been developed. It includes variable wind loads from wind field simulation and aerodynamic analysis, stress prediction by finite element analysis, and fatigue damage evaluation based on the resulting fatigue data. The variable wind load is represented by a joint distribution of mean wind speed and turbulence intensity. In order to simulate realistic wind loads applied on the blade while maintaining affordable computational time, the sectional surface pressure fields obtained from the potential flow aerodynamics model XFOIL are transformed to match the lift, drag, and moment coefficients obtained using AeroDyn. Thus, the modified pressure distribution includes the effect of dynamic stall, rotation, and wake effects on the blade aerodynamics. A high-fidelity finite element blade model, in which the design of composite materials can be easily tailored, has been parameterized for detailed stress analysis. The non-proportional multi-axial complex stress states are involved when calculating 10-min fatigue damage of section points through laminate thickness. The annual fatigue damage is calculated based on the 10-min fatigue damage and the joint distribution of 10-min mean wind speed and 10-min turbulence intensity. Consequently, the blade fatigue effect due to not only the mean wind speed and the atmospheric turbulence in the short term, but also the wind load variation in a large spatiotemporal range, can be investigated. The developed fatigue analysis framework can facilitate reliability analysis and reliability-based design optimization of composite wind turbine blades.
机译:已经开发出用于复合风力涡轮机叶片的综合疲劳分析框架。它包括来自风场模拟和空气动力学分析的可变风载荷,有限元分析的应力预测以及基于所得疲劳数据的疲劳损伤评估。可变风荷载由平均风速和湍流强度的联合分布表示。为了在保持可负担的计算时间的同时模拟施加在叶片上的实际风载荷,对从势流空气动力学模型XFOIL获得的截面表面压力场​​进行了转换,以匹配使用AeroDyn获得的升力,阻力和力矩系数。因此,修改后的压力分布包括动态失速,旋转和尾流效应对叶片空气动力学的影响。已经对高保真有限元叶片模型进行了参数化,可以轻松地定制复合材料的设计,以进行详细的应力分析。通过层压板厚度计算截面点的10分钟疲劳损伤时,会涉及非比例多轴复合应力状态。年度疲劳损伤是基于10分钟疲劳损伤和10分钟平均风速和10分钟湍流强度的联合分布来计算的。因此,可以研究不仅由于短期的平均风速和大气湍流,而且还由于大的时空范围内的风负荷变化引起的叶片疲劳效果。开发的疲劳分析框架可以促进复合材料风力涡轮机叶片的可靠性分析和基于可靠性的设计优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号