首页> 外文期刊>Structural and multidisciplinary optimization >Reliability based optimization in aeroelastic stability problems using polynomial chaos based metamodels
【24h】

Reliability based optimization in aeroelastic stability problems using polynomial chaos based metamodels

机译:基于多项式混沌元模型的气动弹性稳定性问题中基于可靠性的优化

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, reliability based design optimization (RBDO) of two aeroelastic stability problems is addressed: (i) divergence, which arises in static aeroelasticity, and (ii) flutter, which arises in dynamic aeroelasticity. A set of design variables is considered as random variables, and the mean mass is minimized for a given set of constraints - including the probability of failure by divergence or flutter. The optimization process requires repeated evaluation of reliability, which is a major contributor to the total computational cost. To reduce this cost, a polynomial chaos expansion (PCE)-based metamodel is created over a grid in the parameter space. These precomputed PCEs are then interpolated for reliability calculation at intermediate points in the parameter space, as demanded by the optimization algorithm. Two new modifications are made to this method in this work. First, the Gauss quadrature rule is used - instead of statistical simulation - to estimate the chaos coefficients for higher computational speed. Second, to increase this computational gain further, a non-uniform grid is chosen instead of a uniform one, based on relative importance of the design parameters. This relative importance is found from a global sensitivity analysis. This new modified method is applied on a rectangular unswept cantilever wing model. For both optimization problems, it is observed that the proposed method yields accurate results with a considerable computational cost reduction, when compared to simulation based methods. The effect of grid spacing is also explored to achieve the best computational efficiency.
机译:在这项工作中,解决了两个气动弹性稳定性问题的基于可靠性的设计优化(RBDO):( i)产生于静态气动弹性的发散,以及(ii)产生于动态气动弹性的颤动。一组设计变量被视为随机变量,并且对于给定的一组约束-包括因发散或颤动而导致失效的可能性,平均质量被最小化。优化过程需要重复评估可靠性,这是总计算成本的主要因素。为了降低此成本,在参数空间中的网格上创建了​​基于多项式混沌扩展(PCE)的元模型。然后,根据优化算法的要求,将这些预先计算的PCE插值以在参数空间的中间点进行可靠性计算。在这项工作中,对该方法进行了两个新的修改。首先,使用高斯正交规则(而不是统计模拟)来估计混沌系数,以提高计算速度。其次,为了进一步增加该计算增益,根据设计参数的相对重要性,选择了非均匀网格而不是均匀网格。这种相对重要性是通过全局敏感性分析发现的。这种新的修改方法应用于矩形未掠过的悬臂翼模型。对于这两个优化问题,与基于仿真的方法相比,该方法可产生准确的结果,并显着降低了计算成本。还探讨了网格间距的影响,以获得最佳的计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号