【24h】

Limit theorems for iterated random functions by regenerative methods

机译:再生方法的迭代随机函数的极限定理

获取原文
获取原文并翻译 | 示例
           

摘要

Let (X,d) be a complete separable metric space and (F-n)(n greater than or equal to0) a sequence of i.i.d. random functions from X to X which are uniform Lipschitz, that is, L-n=sup(x not equaly)d(F-n(x),F-n(y))/d(x,y) < infinity a.s. Providing the mean contraction assumption Elog(+)L(1) < 0 and Elog(+)d(F-1(x(0)),x(0)) < infinity for some x(0) is an element of X, it was proved by Elton (Stochast. Proc. Appl. 34 (1990) 39-47) that the forward iterations M-n(x) = F-n o...o F-1(x), n greater than or equal to 0, converge weakly to a unique stationary distribution pi for each x is an element of X. The associated backward iterations (M) over cap (x)(n) = F-1 o...o F-n(x) are a.s. convergent to a random variable (M) over cap infinity which does not depend on x and has distribution pi. Based on the inequality d((M) over cap (x)(n+m), (M) over cap (x)(n)) less than or equal to exp(Sigma (n)(k=1) logL(k))d(Fn+1 o...o Fn+m(x),x) for all n,m greater than or equal to 0 and the observation that (F-k=1(n) logL(k))(n greater than or equal to0) forms an ordinary random walk with negative drift, we will provide new estimates for d((M) over cap (infinity),(M) over cap (x)(n)) and d(M-n(x),M-n(y)), x, y is an element of X, under polynomial as well as exponential moment conditions on log(1 + L-1) and log(1 + d(F-1(x(0)), x(0))). It will particularly be shown, that the decrease of the Prokhorov distance between P-n(x, (.)) and pi to 0 is of polynomial, respectively exponential rate under these conditions where P-n denotes the n-step transition kernel of the Markov chain of forward iterations. The exponential rate was recently proved by Diaconis and Freedman (SIAM Rev. 41 (1999) 45-76) using different methods. (C) 2001 Elsevier Science B.V. All rights reserved. [References: 6]
机译:令(X,d)是一个完全可分离的度量空间,而(F-n)(n大于或等于0)是i.i.d的序列。从X到X的随机函数,它们是均匀的Lipschitz,即L-n = sup(x不等于)d(F-n(x),F-n(y))/ d(x,y)<无限大a.s.提供某些x(0)的平均收缩假设Elog(+)L(1)<0和Elog(+)d(F-1(x(0)),x(0))<无穷大是X的元素,由Elton(Stochast。Proc。Appl。34(1990)39-47)证明,正向迭代Mn(x)= Fn o ... o F-1(x),n大于或等于0 ,对于每个x弱收敛到唯一的静态分布pi是X的元素。上限(x)(n)= F-1 o ... o Fn(x)的相关反向迭代(M)为收敛到上限无限的随机变量(M),该变量不依赖x并且具有pi分布。基于不等式d((M)超过上限(x)(n + m),(M)超过上限(x)(n))小于或等于exp(Sigma(n)(k = 1)logL( k))d(Fn + 1 o ... o Fn + m(x),x)对于所有大于或等于0的n,m以及(Fk = 1(n)logL(k))( n大于或等于0)形成具有负漂移的普通随机游动,我们将为d((M)超过上限(无穷大),(M)超过上限(x)(n))和d(Mn( x),Mn(y)),x,y是多项式以及log(1 + L-1)和log(1 + d(F-1(x(0))的指数矩条件下的X的元素),x(0)))。特别要说明的是,在这些条件下,Pn(x,(。))和pi之间的Prokhorov距离减小分别为多项式和指数速率,其中Pn表示马尔可夫链的n阶跃迁核。正向迭代。 Diaconis和Freedman(SIAM Rev. 41(1999)45-76)最近使用不同的方法证明了指数速率。 (C)2001 Elsevier Science B.V.保留所有权利。 [参考:6]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号