...
首页> 外文期刊>Spectrochimica Acta, Part B. Atomic Spectroscopy >Theoretical study of the formation mechanism of laser-induced aluminum plasmas using Nd:YAG fundamental, second or third harmonics
【24h】

Theoretical study of the formation mechanism of laser-induced aluminum plasmas using Nd:YAG fundamental, second or third harmonics

机译:Nd:YAG基波,二次谐波或三次谐波对激光诱导铝等离子体形成机理的理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

The Collisional-Radiative model CoRaM-Al is implemented in a OD numerical code in the purpose of describing the formation of the plasma resulting from the interaction between a 4 ns Nd:YAG laser pulse and an aluminum sample in vacuum. The influence of the first three harmonics at 355 nm, 532 nm and 1064 nm is studied. In each case, the fluence value is set equal to the threshold above which a phase explosion takes place. The sample surface temperature is therefore limited to the critical temperature (6700 K). The solid → gas transition is classically treated by using the Hertz-Knudsen law. The species considered in CoRaM-Al are Al, Al~+, Al~(2+), Al~(3+) and free electrons. They are in thermochemical non-equilibrium at different temperatures. Each state behaves freely owing to electron impact induced excitation and ionization, elastic collisions, Multiphoton Ionization (MPI), Inverse Bremsstrahlung (IB), thermal Bremsstrahlung, and spontaneous emission. The results show that MPI and IB play a complementary role in the heating process of electrons. In the ultraviolet and visible cases, the increase in electron temperature is mainly due to multiphoton ionization before the maximum irradiance. The electron temperature does not exceed 9000 K. The heavy particle temperature mainly results from the surface temperature. Conversely, in the infrared case, electron temperature strongly increases after the maximum irradiance owing to inverse Bremsstrahlung. Electrons then give a part of their energy for the benefit of heavy particles, which leads to the increase in their temperature. The electron number density reaches its maximum during the laser pulse with a value of the order of 10~(25) m~(-3) and the electron temperature exceeds 13,000 K. A maximum of the ionization degree close to 0.2 is thus obtained at 1064 nm.
机译:为了描述由4 ns Nd:YAG激光脉冲与铝样品在真空中的相互作用所导致的等离子体形成,Colloidional-Radiative模型CoRaM-Al以OD数字代码实现。研究了前三个谐波在355 nm,532 nm和1064 nm的影响。在每种情况下,将通量值设置为等于阈值,在该阈值以上会发生相位爆炸。因此,样品表面温度限制在临界温度(6700 K)。固→气的转变经典地通过使用赫兹-努森定律进行处理。 CoRaM-Al中考虑的物种是Al,Al〜+,Al〜(2 +),Al〜(3+)和自由电子。它们在不同温度下处于热化学非平衡状态。由于电子碰撞引起的激发和电离,弹性碰撞,多光子电离(MPI),逆Bre致辐射(IB),thermal致辐射和自发发射,每个状态都可以自由发挥作用。结果表明,MPI和IB在电子的加热过程中起互补作用。在紫外线和可见光的情况下,电子温度的升高主要归因于在最大辐照之前的多光子电离。电子温度不超过9000K。重粒子温度主要由表面温度引起。相反,在红外情况下,由于Bre致辐射的逆,电子温度在最大辐照度后会大大升高。然后,电子会释放一部分能量,以利于重颗粒,这会导致其温度升高。在激光脉冲期间,电子数密度达到最大值,约为10〜(25)m〜(-3),电子温度超过13,000K。因此,在0时可获得最大接近0.2的电离度。 1064 nm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号