首页> 外文期刊>Ceramic Engineering and Science Proceedings >EFFECTS OF ENVIRONMENT ON CREEP BEHAVIOR OF NEXTEL 720/ALUMINA-MULLITE CERAMIC COMPOSITE WITH ±45° FIBER ORIENTATION AT 1200℃
【24h】

EFFECTS OF ENVIRONMENT ON CREEP BEHAVIOR OF NEXTEL 720/ALUMINA-MULLITE CERAMIC COMPOSITE WITH ±45° FIBER ORIENTATION AT 1200℃

机译:环境对1200℃±45°纤维取向的NEXTEL 720 /铝棕刚玉陶瓷复合材料蠕变行为的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The tensile creep behavior of an oxide-oxide continuous fiber ceramic composite with ±45° fiber orientation was investigated at 1200℃ in laboratory air, in steam and in argon. The composite consists of a porous alumina-mullite matrix reinforced with laminated, woven mullite/alumina (Nextel 720) fibers, has no interface between the fiber and matrix, and relies on the porous matrix for flaw tolerance. The tensile stress-strain behavior was investigated and the tensile properties measured at 1200℃. The elastic modulus was 38.9 GPa and the ultimate tensile strength (UTS) was 37 MPa. Tensile creep behavior was examined for creep stresses in the 13-32 MPa range. Primary and secondary creep regimes were observed in all tests. Tertiary creep was observed at 32 MPa in steam and at stress levels ≥ 26 MPa in argon environment, Creep run-out (set to 100 h) was achieved in all test environments for creep stress levels ≤ 20 MPa. At creep stresses > 20 MPa, creep performance was best in laboratory air and worst in steam. The presence of either steam or argon accelerated creep rates and significantly reduced creep life. Composite microstructure, as well as damage and failure mechanisms were investigated. Matrix degradation appears to be the cause of early failures in argon and in steam.
机译:在1200℃的实验室空气,蒸汽和氩气中研究了纤维取向为±45°的氧化物-氧化物连续纤维陶瓷复合材料的拉伸蠕变行为。该复合材料由多孔氧化铝-莫来石基质组成,该基质用层压的机织莫来石/氧化铝(Nextel 720)纤维增强,在纤维和基质之间没有界面,并且依靠多孔基质实现耐缺陷性。研究了拉伸应力-应变行为,并在1200℃下测量了拉伸性能。弹性模量为38.9 GPa,极限抗拉强度(UTS)为37 MPa。对于13-32 MPa范围内的蠕变应力,检查了拉伸蠕变行为。在所有测试中均观察到初级和次级蠕变状态。在蒸汽中在32 MPa下观察到三次蠕变,在氩气环境中在应力水平≥26 MPa时观察到第三蠕变,在所有试验环境中,当蠕变应力水平≤20 MPa时均达到蠕变跳动(设置为100 h)。在蠕变应力> 20 MPa时,蠕变性能在实验室空气中最佳,而在蒸汽中则最差。蒸汽或氩气的存在会加快蠕变速率,并显着缩短蠕变寿命。研究了复合材料的微观结构以及损伤和破坏机理。基质降解似乎是氩气和蒸汽早期失效的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号