首页> 外文期刊>Ceramic Engineering and Science Proceedings >TENSILE AND THERMAL PROPERTIES OF CHEMICALLY VAPOR-INFILTRATED SILICON CARBIDE COMPOSITES OF VARIOUS HIGH-MODULUS FIBER REINFORCEMENTS
【24h】

TENSILE AND THERMAL PROPERTIES OF CHEMICALLY VAPOR-INFILTRATED SILICON CARBIDE COMPOSITES OF VARIOUS HIGH-MODULUS FIBER REINFORCEMENTS

机译:各种高模量纤维增强材料的化学气相渗透碳化硅复合材料的拉伸和热性能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Chemically vapor-infiltrated (CVT) silicon carbide (SiC) matrix composites are candidate structural materials for proposed nuclear fusion and advanced fission applications due to their high temperature stability under neutron irradiation. To optimize the thermal stress properties for nuclear applications, CVI-SiC matrix composites were produced with three-dimensional (3D) fiber architectures with varied Z-fiber content, using the highly-crystalline and near-stoichiometric SiC fiber Tyranno?-SA. In addition, hybrid SiC/SiC composites incorporating carbon fibers were fabricated to improve thermal conductivity. The purpose of this work is to obtain thermal and mechanical properties data on these developmental composites. Results show that the addition of small amount (>10 %) of Tyranno-SA fiber remarkably increases the composite thermal conductivity parallel to the fiber longitudinal direction, in particular the through-thickness thermal conductivity in the orthogonal three-dimensional composite system due to the excellent thermal conductivity of Tyranno-SA fiber itself. On the other hand, tensile properties were significantly dependent on the axial fiber volume fraction; 3D SiC/SiC composites with in-plane fiber content <15 % exhibited lower tensile strength and proportional limit failure stress. Results show that the composites with axial fiber volume >20 % exhibit improved axial strength. The carbon fiber was, in general, beneficial to obtain high thermal conductivity. However matrix cracks induced due to the mismatch of coefficients of thermal expansion (CTE) restricted heat transfer via matrix, limiting the improvement of thermal conductivity and reducing tensile proportional limit stress.
机译:化学气相渗透(CVT)碳化硅(SiC)基复合材料由于在中子辐照下的高温稳定性而成为拟议的核聚变和先进裂变应用的候选结构材料。为了优化用于核应用的热应力性能,使用高结晶度和接近化学计量的SiC纤维Tyranno?-SA,使用具有不同Z纤维含量的三维(3D)纤维结构生产CVI-SiC基复合材料。另外,制造了掺有碳纤维的混合SiC / SiC复合材料以提高导热性。这项工作的目的是获得这些发育复合材料的热和机械性能数据。结果表明,少量(> 10%)的Tyranno-SA纤维的加入显着提高了与纤维纵向平行的复合材料的导热系数,特别是由于正交三维复合体系中的全厚度导热系数Tyranno-SA纤维本身具有出色的导热性。另一方面,拉伸性能显着取决于轴向纤维体积分数。面内纤维含量<15%的3D SiC / SiC复合材料表现出较低的拉伸强度和比例极限破坏应力。结果表明,轴向纤维体积> 20%的复合材料具有改善的轴向强度。通常,碳纤维有利于获得高导热率。但是,由于热膨胀系数(CTE)不匹配而引起的基体裂纹限制了通过基体的传热,从而限制了导热性的提高并降低了拉伸比例极限应力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号