首页> 外文期刊>Space Science Reviews >Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering Studies
【24h】

Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering Studies

机译:水星受天气影响的表面:在月球和小行星空间风化研究的背景下理解水星

获取原文
       

摘要

Mercury's regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury's exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury's regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury's regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury's regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on theMoon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometerscale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury's dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury's relatively featureless visible-near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury's surface composition.
机译:水星的地壳起源于地壳基岩,已被一系列空间风化过程所改变。在我们解释地壳成分之前,有必要了解这些表面变化的性质。空间对表面进行风化的过程与形成水星系外层的过程(微流星体通量和太阳风的相互作用)相同,并且受局部空间环境和全球磁场的存在而缓和。为了理解空间风化如何作用于水星的长石上,需要了解贡献过程如何充当交互系统。由于尚无直接的信息(例如,从返回的样本中获得)有关空间风化系统如何影响水星重排石的信息,因此我们将其作为比较当前对月球和小行星重石的相同理解以及实验室模拟的基础。这些比较表明,水星的重石块被更频繁地倾覆(尽管相对于月球情况,谷物的特征表面时间是未知的),每单位时间和单位面积的熔体和水蒸气通过冲击过程产生的数量级要大一个数量级以上。与月球相比(通过晶粒涂层和凝集物产生更高的玻璃含量),表面辐照程度与月球相当或更高,光子辐照的幅度最大(化学上产生非晶晶粒边缘)减少晶粒的上层以产生纳米级的金属铁颗粒,并耗尽挥发性元素和碱金属中的表面晶粒。有人提出,化学还原表面并在水星上产生纳米级颗粒的过程比月球上的类似过程更有效。相对于月球,估计的纳米级粒子丰度可以解释水星的黑暗表面,而无需宏观的不透明矿物颗粒。纳米级粒子的存在也可以解释水星相对无特征的可见-近红外反射光谱。从小行星25143 Itokawa返回的物质的特性表明,这种纳米级物质不必是纯铁,这增加了水星上的纳米级物质可能具有与铁金属不同的组成的可能性[例如(Fe,Mg)S] 。预期的太阳风-风相互作用过程中的挥发物特别是碱金属的消耗与重灰石中钠,钾和硫的检测不一致。一个合理的解释是,与月球表面物质相比,它需要更大的细颗粒(粒度<45μm)和更多的受辐射破坏的颗粒,从而形成了粉煤灰,可以更有效地储存这些挥发物。从这个角度来看,检测到的挥发性元素不仅存在于晶粒结构中,而且还作为吸附剂存在于硬质合金中,并沉积在硬质合金颗粒的表面上。与月球和小行星的发现进行的比较为预测空间风化引起的成分变化如何影响水星的表面成分提供了基础。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号