...
首页> 外文期刊>Space Science Reviews >Spectroscopy Between the Stars
【24h】

Spectroscopy Between the Stars

机译:星际光谱

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The emission and absorption spectra of interstellar molecules are reviewed with special consideration of recent observational and technical advances in the shorter submillimeter wave region of the electromagnetic spectrum. Single-dish observations have contributed in the past probably most of the information about the structure of interstellar molecular clouds. At present about 120 interstellar molecules have been identified in interstellar clouds and circumstellar envelopes, evidence of a rich and diversified chemistry. CO, the most abundant interstellar molecule and other diatomic molecules and radicals are found throughout molecular clouds, whereas the more complex molecules are found in high-density cores, which are often the sites of active star formation. These locations represent prime targets for the search for larger molecules, such as glycine. The ignition of young stars is accompanied by strong heating of the surrounding material by radiation and/or shocks, leading to photoevaporation of molecules depleted on dust grains driving a "hot core" chemistry, traceable by its rich organic chemistry and its prevailing high excitation conditions (up to about 2000 cam~(-1). However, in the list of detected interstellar molecules many simple hydrides are still missing, e. g. SH, PH, PH_2, etc., which constitute the building blocks for larger molecules. With the technological opening of the terahertz region (#nu# approx 1 THz corresponds to #lambda# approx0.3 mm) to both laboratory and interstellar spectroscopy, great scientific advances are to be expected. Amongst these will be the direct detection of the lowest rotational transitions of the light hydrides, the low energy bending vibrations of larger (linear) molecules, and possibly the ring-puckering motion of larger ring molecules such as the polycyclic (multiring) aromatic hydrocarbons.
机译:回顾了星际分子的发射和吸收光谱,并特别考虑了电磁光谱较短的亚毫米波区域中的最新观测和技术进步。在过去,单碟观测可能是有关星际分子云结构的大多数信息的重要贡献。目前,已在星际云和星际包膜中鉴定出约120个星际分子,这是化学丰富而多样的证据。 CO,最丰富的星际分子以及其他双原子分子和自由基遍布整个分子云,而更复杂的分子则存在于高密度核中,而高密度核通常是活跃恒星形成的场所。这些位置代表了寻找更大分子(例如甘氨酸)的主要目标。点燃年轻恒星时,辐射和/或冲击会强烈加热周围的物质,导致耗尽尘埃颗粒上的分子发生光蒸发,从而驱动“热核”化学反应,可通过其丰富的有机化学物质和普遍的高激发条件进行追踪(最多约2000 cam〜(-1)。但是,在检测到的星际分子列表中,仍然缺少许多简单的氢化物,例如SH,PH,PH_2等,它们构成了较大分子的组成部分。)太赫兹区域(#nu#大约1 THz对应于#lambda#大约0.3 mm)对实验室和星际光谱的开放,有望取得重大科学进展,其中包括直接检测最低的旋转跃迁轻的氢化物,较大的(线性)分子的低能弯曲振动,以及较大的环状分子(如多环(多环)芳香烃)的起皱运动糖果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号