首页> 外文期刊>Space Science Reviews >Laboratory astrophysics: Investigation of planetary and astrophysical maser emission
【24h】

Laboratory astrophysics: Investigation of planetary and astrophysical maser emission

机译:实验室天体物理学:行星和天体maser发射的研究

获取原文
获取原文并翻译 | 示例
       

摘要

This paper describes a model for cyclotron maser emission applicable to planetary auroral radio emission, the stars UV Ceti and CU Virginus, blazar jets and astrophysical shocks. These emissions may be attributed to energetic electrons moving into convergent magnetic fields that are typically found in association with dipole like planetary magnetospheres or shocks. It is found that magnetic compression leads to the formation of a velocity distribution having a horseshoe shape as a result of conservation of the electron magnetic moment. Under certain plasma conditions where the local electron plasma frequency ω_pe is much less than the cyclotron frequency ω_ce the distribution is found to be unstable to maser type radiation emission. We have established a laboratory-based facility that has verified many of the details of our original theoretical description and agrees well with numerical simulations. The experiment has demonstrated that the horseshoe distribution produces cyclotron emission at a frequency just below the local electron cyclotron frequency, with polarisation close to X-mode and propagating nearly perpendicularly to the electron beam motion. We discuss recent developments in the theory and simulation of the instability including addressing radiation escape problems, and relate these to the laboratory, space, and astrophysical observations. The experiments showed strong narrow band EM emissions at frequencies just below the cold-plasma cyclotron frequency as predicted by the theory. Measurements of the conversion efficiency, mode and spectral content were in close agreement with the predictions of numerical simulations undertaken using a particle-in-cell code and also with satellite observations confirming the horseshoe maser as an important emission mechanism in geophysical/astrophysical plasmas. In each case we address how the radiation can escape the plasma without suffering strong absorption at the second harmonic layer.
机译:本文描述了一种适用于行星极光辐射,回旋紫外线Ceti和CU Virginus,blazar射流和天体物理冲击的回旋加速器maser发射模型。这些发射可能归因于高能电子进入会聚磁场,这些磁场通常与偶极子(如行星磁层或震动)有关。发现由于电子磁矩的守恒,磁压缩导致形成具有马蹄形的速度分布。在某些等离子体条件下,其中局部电子等离子体频率ω_pe远小于回旋加速器频率ω_ce,发现分布对于maser型辐射发射是不稳定的。我们已经建立了一个基于实验室的设施,该设施已经验证了我们原始理论描述的许多细节,并且与数值模拟非常吻合。实验表明,马蹄形分布产生的回旋加速器发射频率恰好低于本地电子回旋加速器频率,极化接近X模,并且几乎垂直于电子束运动传播。我们讨论了不稳定性理论和仿真的最新进展,包括解决辐射逃逸问题,并将这些问题与实验室,太空和天体物理观测联系起来。实验表明,在理论认为的冷等离子体回旋加速器频率以下的频率处,强窄带EM发射。转换效率,模式和光谱含量的测量结果与使用单元格内粒子代码进行的数值模拟的预测非常吻合,并且与卫星观测结果相符,证实了马蹄形激射器是地球物理/天体物理等离子体中的重要发射机制。在每种情况下,我们都解决了辐射如何逃逸出等离子体而又不遭受二次谐波层强烈吸收的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号