...
首页> 外文期刊>Spine >Prediction of load sharing among spinal components of a C5-C6 motion segment using the finite element approach.
【24h】

Prediction of load sharing among spinal components of a C5-C6 motion segment using the finite element approach.

机译:使用有限元方法预测C5-C6运动节段的脊柱组件之间的负载分担。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

STUDY DESIGN: A finite element model of the ligamentous cervical spinal segment was used to compute loads in various structures in response to clinically relevant loading modes. OBJECTIVE: To predict biomechanical parameters, including intradisc pressure, tension in ligaments, and forces across facets that are not practical to quantify with an experimental approach. SUMMARY OF BACKGROUND DATA: Finite element models of the cervical spine in their present form, because of inherent assumptions and simplifications, are not entirely satisfactory for studying the biomechanics of the intact, injured, and stabilized cervical spinal segment. METHODS: A three-dimensional finite element model of a C5-C6 motion segment was developed from serial computed tomographic scans of a ligamentous cervical spinal segment. This model included nonlinear ligament definition, fully composite intervertebral disc, fluid nucleus, and Luschka's joints. The model-based displacement predictions were in agreement with the experimental data. This model was used to predict load sharing and other related parameters in spinal elements in response to various loading modalities. RESULTS: In axial compression, 88% of the applied load passed through the disc. The interspinal ligament experienced the most strain (29.5%) in flexion, and the capsular ligaments were strained the most (15.5%) in axial rotation. The maximum intradisc pressure was 0.24 MPa in the flexion with axial compression mode (1.8 Nm + 73.6 N). The anterior and posterior disc bulges increased with the increase in axial compression (up to 800 N). CONCLUSIONS: The results provide new insight into the role of various elements in transmitting loads. The model represents significant and essential advancement in comparison with previous finite element models, making it possible for such models to be used in investigating a broad spectrum of clinically relevant issues.
机译:研究设计:韧带颈椎脊髓节段的有限元模型用于计算各种结构中的载荷,以响应临床相关的载荷模式。目的:预测生物力学参数,包括椎间盘内压力,韧带张力和跨小平面的力,这是无法用实验方法量化的。背景技术概述:由于固有的假设和简化,目前形式的颈椎有限元模型对于研究完整,受伤和稳定的颈椎节段的生物力学并不完全令人满意。方法:从连续韧带颈椎节段的计算机断层扫描中建立了C5-C6运动节段的三维有限元模型。该模型包括非线性韧带定义,完全复合的椎间盘,流体核和Luschka关节。基于模型的位移预测与实验数据一致。该模型用于预测脊柱元件中的载荷分配和其他相关参数,以响应各种载荷方式。结果:在轴向压缩中,施加的载荷的88%通过了圆盘。椎间韧带屈曲的应变最大(29.5%),而囊状韧带的轴向旋转应变最大(15.5%)。在轴向压缩模式下屈曲时,最大椎间盘内压力为0.24 MPa(1.8 Nm + 73.6 N)。椎间盘前凸和后凸随着轴向压力的增加而增加(最大800 N)。结论:结果提供了新的见解,各种因素在传递载荷中的作用。与以前的有限元模型相比,该模型代表了重要且必不可少的进步,使此类模型有可能用于研究广泛的临床相关问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号