...
首页> 外文期刊>Soil Science Society of America Journal >Impacts of Wet-Dry Cycles and a Range of Constant Water Contents on Carbon Mineralization in Soils under Three Cropping Treatments
【24h】

Impacts of Wet-Dry Cycles and a Range of Constant Water Contents on Carbon Mineralization in Soils under Three Cropping Treatments

机译:三种种植方式下干旱循环和一定含水量范围对土壤碳矿化的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Soil water content and cropping history play important roles in soil organic carbon inputs, decomposition, and nutrient cycling. However, variations in soil water content including wetting and drying events can influence organic carbon transformations in soils. The impacts of constant soil water contents (30, 45, 60, 75, and 90% water-filled pore space, WFPS), wet-dry (W-D) cycles (five 10-d cycles varying between 90 and 30% WFPS) and cropping treatments on carbon mineralization (CO2 emissions) and dissolved organic carbon (DOC) were investigated using repacked cores of a clay loam soil incubated for 50 d. The cropping treatments included monoculture corn (Zea mays L.), a 2-yr corn-soybean (Glycine max L. Merr.) rotation (C-S), and a 3-yr corn-soybean-winter wheat (Triticum aestivum L.) rotation (C-S-WW) as these were believed to impact the carbon status of the soils. The carbon mineralization rates increased with increasing soil water content, and generally achieved the highest rates after 10 d. Cumulative carbon mineralization was greatest with the wettest constant soil water content treatment (i.e., 90% WFPS) and decreased with decreasing constant WFPS values. The average water content over the 10 d drying process for the W-D treatment was 63% WFPS. Cumulative carbon mineralization during the W-D cycles was similar to that for the constant 60% WFPS treatment. The corn phase of the C-S-WW rotation produced lower carbon mineralization rates than the corn phase of the C-S rotation and monoculture corn for each constant soil water content treatment. The DOC levels dramatically decreased over the first 10 d and then remained between 36.5 and 69.8 mg C kg(-1) for the subsequent 40 d. Cropping treatments did not significantly affect the DOC levels. In general, the effect of the W-D cycles on carbon mineralization appeared to be related more to the average soil water content during the drying process than to soil carbon release as a result of soil drying and rewetting.
机译:土壤含水量和耕作历史在土壤有机碳输入,分解和养分循环中起着重要作用。然而,包括湿润和干燥事件在内的土壤含水量的变化会影响土壤中有机碳的转化。恒定土壤含水量(30%,45%,60%,75%和90%的充满水的孔隙空间WFPS),干湿(WD)循环(5个10天的循环,在90%和30%WFPS之间变化)的影响以及使用温育50 d的粘土壤土的重新包装芯,研究了碳矿化(CO 2排放)和溶解有机碳(DOC)的种植处理。种植处理包括单作玉米(Zea mays L。),2年玉米-大豆(Glycine max L. Merr。)轮作(CS)和3年玉米-大豆-冬小麦(Triticum aestivum L.)。旋转(CS-WW),因为它们被认为会影响土壤的碳状态。碳矿化率随土壤含水量的增加而增加,一般在10 d后达到最​​高。在最湿的恒定土壤含水量(即90%WFPS)处理下,累积的碳矿化作用最大,而随着恒定WFPS值的降低,累积碳矿化作用降低。 W-D处理在10天干燥过程中的平均含水量为63%WFPS。在W-D循环中的累积碳矿化与恒定的60%WFPS处理相似。对于每种恒定的土壤含水量处理,C-S-WW轮作的玉米相产生的碳矿化速率低于C-S-WW轮作的玉米相和单一栽培玉米的碳矿化率。在最初的10 d中,DOC水平急剧下降,然后在随后的40 d中保持在36.5至69.8 mg C kg(-1)之间。种植处理对DOC水平没有明显影响。通常,W-D循环对碳矿化的影响似乎与干燥过程中的平均土壤含水量有关,而不是与土壤干燥和再湿润导致的土壤碳释放有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号